Efficient Haze Removal from a Single Image Using a DCP-Based Lightweight U-Net Neural Network Model
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Prior-Based Methods
2.2. Deep Learning-Based Methods
2.3. Dark Channel Prior (DCP)
3. A Proposed Lightweight U-Net-Structured Neural Network Specialized for DCP-Based Dehazing
3.1. The Overall Structure of the Proposed Neural Network Model
3.2. Structure and Features of the Sub-Neural Networks That Make up a Neural Network Model
3.3. Loss Functions and Training Strategies
4. Experiments and Results
4.1. Experimental Environment and Datasets
4.2. Experimental Results and Performance Comparison with DCP
4.3. Experimental Results and Performance Comparison with Other Neural Networks
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.-W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [PubMed]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [PubMed]
- Sharma, N.; Kumar, V.; Singla, S.K. Single Image Defogging using Deep Learning Techniques: Past, Present and Future. Arch. Comput. Methods Eng. 2021, 28, 4449–4469. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Huang, Y.; Chen, Y. Survey of State-of-Art Autonomous Driving Technologies with Deep Learning. In Proceedings of the 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Macau, China, 11–14 December 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Sun, H.; Ang, M.H.; Rus, D. A Convolutional Network for Joint Deraining and Dehazing from A Single Image for Autonomous Driving in Rain. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Ren, W.; Jin, N.; OuYang, L. Phase Space Graph Convolutional Network for Chaotic Time Series Learning. IEEE Trans. Ind. Inform. 2024, 20, 7576–7584. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.-H. Single Image Dehazing via Multi-scale Convolutional Neural Networks. In Computer Vision-ECCV 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 154–169. [Google Scholar]
- Wu, H.; Gao, T.; Ji, Z.; Song, M.; Zhang, L.; Kong, D. Dark-Channel Soft-Constrained and Object-Perception-Enhanced Deep Dehazing Networks Used for Road Inspection Images. Sensors 2023, 23, 8932. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X. Multi-Scale Boosted Dehazing Network with Dense Feature Fusion. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Yang, G.; Yang, H.; Yu, S.; Wang, J.; Nie, Z. A Multi-Scale Dehazing Network with Dark Channel Priors. Sensors 2023, 23, 5980. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature Fusion Attention Network for Single Image Dehazing. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11908–11915. [Google Scholar] [CrossRef]
- Shi, Z.; Huo, J.; Meng, Z.; Yang, F.; Wang, Z. An Adversarial Dual-Branch Network for Nonhomogeneous Dehazing in Tunnel Construction. Sensors 2023, 23, 9245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y.; Yang, Y.; Liu, D. PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Liu, J.; Wu, H.; Xie, Y.; Qu, Y.; Ma, L. Trident Dehazing Network. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Yu, Y.; Liu, H.; Fu, M.; Chen, J.; Wang, X.; Wang, K. A Two-branch Neural Network for Non-homogeneous Dehazing via Ensemble Learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 20–25 June 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Shiau, Y.-H.; Chen, P.-Y.; Yang, H.-Y.; Chen, C.-H.; Wang, S.-S. Weighted haze removal method with halo prevention. J. Vis. Commun. Image Represent. 2014, 25, 445–453. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; Zheng, J.; Zheng, L. Single image haze removal using content-adaptive dark channel and post enhancement. IET Comput. Vis. 2014, 8, 131–140. [Google Scholar] [CrossRef]
- OpenCV. Color Space Conversions. Accessed: May 2024. [Online]. Available online: https://docs.opencv.org/4.x/d8/d01/group__imgproc__color__conversions.html (accessed on 1 January 2024).
- PyTorch. Transforming and Augmenting Images > Grayscale. [Online]. 2017. Available online: https://pytorch.org/vision/main/generated/torchvision.transforms.Grayscale.html (accessed on 1 January 2017).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss Functions for Image Restoration with Neural Networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
RESIDE-Standard (ITS) [32] | RESIDE-β (OTS) | NH-HAZE [33] | |
---|---|---|---|
Hazy | 1399 | 72,135 | 55 |
Clear | 1399 | 72,135 | 55 |
Resolution | 620 × 460 | 1600 × 1200 |
Datasets | Input | Ours (1M) | Ours (2M) | DCP [2] |
---|---|---|---|---|
NH-Haze | 11.47 | 20.84 | 21.63 | 12.58 |
RESIDE-β (OTS) | 15.61 | 28.83 | 30.72 | 15.76 |
RESIDE-Standard (ITS) | 13.04 | 26.2 | 27.6 | 17.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Kim, J.; Lee, J.; Nah, J.-H.; Ho, Y.-S.; Park, W.-C. Efficient Haze Removal from a Single Image Using a DCP-Based Lightweight U-Net Neural Network Model. Sensors 2024, 24, 3746. https://doi.org/10.3390/s24123746
Han Y, Kim J, Lee J, Nah J-H, Ho Y-S, Park W-C. Efficient Haze Removal from a Single Image Using a DCP-Based Lightweight U-Net Neural Network Model. Sensors. 2024; 24(12):3746. https://doi.org/10.3390/s24123746
Chicago/Turabian StyleHan, Yunho, Jiyoung Kim, Jinyoung Lee, Jae-Ho Nah, Yo-Sung Ho, and Woo-Chan Park. 2024. "Efficient Haze Removal from a Single Image Using a DCP-Based Lightweight U-Net Neural Network Model" Sensors 24, no. 12: 3746. https://doi.org/10.3390/s24123746
APA StyleHan, Y., Kim, J., Lee, J., Nah, J. -H., Ho, Y. -S., & Park, W. -C. (2024). Efficient Haze Removal from a Single Image Using a DCP-Based Lightweight U-Net Neural Network Model. Sensors, 24(12), 3746. https://doi.org/10.3390/s24123746