Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes
Abstract
:1. Introduction
2. Methods
- (1)
- Assuming 15 min to be a section, the daily second sampling data are divided into 96 sections, and the spectra of the periods 5~25 s, 25~50 s and 50~100 s and their vertical intensity polarization amplitude values, as well as the daily average values, are calculated;
- (2)
- The fuzzy fitting curves are calculated with the daily average values of the vertical intensity polarization with a period of ≥183 days as well as the variance of their residuals;
- (3)
- The fuzzy fitting curve plus two times the variance of its residuals is taken as the threshold line; then, the frequency points where the amplitude of the vertical intensity polarization is lower than the threshold (the external air field influence) are excluded, and the daily mean of the polarization values is recalculated;
- (4)
- Fuzzy fitting is performed with the daily average values of the vertical intensity polarization with a period of ≥183 days, and the residuals of the daily mean are calculated. The 5-day sliding average of the residuals is calculated to eliminate the high-frequency effect.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinaga, Y.; Hayakawa, M.; Liu, J.; Yumoto, K.; Hattori, K. A precursory ULF signature for the Chi-Chi earthquake in Taiwan. Nat. Hazards Earth Syst. Sci. 2001, 1, 33–36. [Google Scholar] [CrossRef]
- Harada, M.; Hattori, K.; Isezaki, N. Transfer function approach to signal discrimination of ULF geomagnetic data. Phys. Chem. Earth 2004, 29, 409–417. [Google Scholar] [CrossRef]
- Hao, J.Q.; Qian, S.Q.; Gao, J.T.; Zhou, J.G.; Zhu, T. ULF electric and magnetic anomalies accompanying the cracking of rock sample. Acta Seismol. Sin. 2003, 16, 113–123. [Google Scholar] [CrossRef]
- Qian, S.; Hao, J.; Zhou, J.; Gao, J. ULF and LF electromagnetic precursor signals for pressure rupture of 330 rocks. China Earthq. 2003, 19, 109–116. [Google Scholar]
- Li, C.; Fu, S.; Guan, C.; Wan, T.; Xie, B. Characteristics and generation mechanism of ULF magnetic signals during coal deformation under uniaxial compression. J. Geophys. Eng. 2018, 15, 1137–1145. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.; Helliwell, R.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the MS7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Bernardi, A.; Fraser-Smith, A.C.; McGill, P.R.; Villard, O.G., Jr. ULF magnetic field measurements near the epicenter of the MS 7.1 Loma Prieta earthquake. Phys. Earth Planet. Inter. 1991, 68, 45–63. [Google Scholar] [CrossRef]
- Kopytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. 1993, 77, 85–95. [Google Scholar] [CrossRef]
- Molchanov, O.; Mazhaeva, O.; Protopopov, M. Electromagnetic VLF radiation of seismic origin observed on the interkosmos-24 satellite. Geomagn. I Aeron. 1992, 32, 128–137. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF electromagnetic emissions by microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultralow-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Hattori, K.; Hayakawa, M.; Miyaki, K.; Molchanov, O.; Belyaev, G. Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity. Nat. Hazards Earth Syst. Sci. 2001, 1, 3–7. [Google Scholar] [CrossRef]
- Thomas, J.N.; Love, J.J.; Johnston, M.J. On the reported magnetic precursor of the 1989 Loma Prieta earthquake. Phys. Earth Planet. Inter. 2009, 173, 207–215. [Google Scholar] [CrossRef]
- Masci, F. On claimed ULF seismogenic fractal signatures in the geomagnetic field. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Yao, X.; Feng, Z. Review on the recent development of analysis methods on magnetic disturbance associated with earthquakes. Prog. Geophys. 2018, 33, 511–520. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Q.; Lu, J.; Li, H.; Ju, H.; Sun, H.; Yang, F.; Zhang, Y. The seismic ULF geomagnetic reliable information exaction based on fluxgate magnetometer data of second value. S. China J. Seismol. 2010, 30, 1–7. [Google Scholar]
- Li, Q.; Schekotov, A.; Asano, T.; Hayakawa, M. On the anomalies in ULF magnetic field variations prior to the 2008 Sichuan earthquake. Open J. Earthq. Res. 2015, 4, 55–64. [Google Scholar] [CrossRef]
- He, M.; Feng, L.; Fan, W.; Zhang, G. The polarization characteristics of geomagnetic vertical intensity before earthquakes of Jiuzhaigou 7.0 and Jinghe 6.6. Recent Dev. World Seismol. 2019, 8, 71–72. [Google Scholar]
- Liao, X.; Feng, L.; Qi, Y.; Li, X. Application of geomagnetic polarization method in the Alashan magnitude 5.0 earthquake. Earthquake 2019, 39, 127–135. [Google Scholar]
- Hayakawa, M.; Itoh, T.; Hattori, K.; Yumoto, K. ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996. Geophys. Res. Lett. 2000, 27, 1531–1534. [Google Scholar] [CrossRef]
- Gotoh, K.; Akinaga, Y.; Hayakawa, M.; Hattori, K. Principal component analysis of ULF geomagnetic data for Izu islands earthquakes in July 2000. J. Atmos. Electr. 2002, 22, 1–12. [Google Scholar] [CrossRef]
- Miyaki, K.; Hayakawa, M.; Molchanov, O. The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data. Seism. Electromagn. Lithosphere-Atmos.-Ionos. Coupling 2002, 229–232. Available online: https://www.dzxb.org/en/article/doi/10.11939/jass.20200196 (accessed on 15 May 2024).
- Honkura, Y.; Matsushima, M.; Oshiman, N.; Tunçer, M.K.; Barış, Ş.; Ito, A.; Iio, Y.; Işikara, A.M. Small electric and magnetic signals observed before the arrival of seismic wave. Earth Planets Space E-Lett. 2002, 54, E9–E12. [Google Scholar] [CrossRef]
- Molchanov, O.; Schekotov, A.; Fedorov, E.; Belyaev, G.; Gordeev, E. Preseismic ULF electromagnetic effect from observation at Kamchatka. Nat. Hazards Earth Syst. Sci. 2003, 3, 203–209. [Google Scholar] [CrossRef]
- Gotoh, K.; Hayakawa, M.; Smirnova, N.A.; Hattori, K. Fractal analysis of seismogenic ULF emissions. Phys. Chem. Earth 2004, 29, 419–424. [Google Scholar] [CrossRef]
- Hattori, K. ULF geomagnetic changes associated with large earthquakes. Terrestrial. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar]
- Hayakawa, M.; Hattori, K.; Ohta, K. Monitoring of ULF (ultralow-frequency) geomagnetic variations associated with earth quakes. Sensors 2007, 7, 1108–1122. [Google Scholar] [CrossRef]
- Prattes, G.; Schwingenschuh, K.; Eichelberger, H.U.; Magnes, W.; Boudjada, M.; Stachel, M.; Vellante, M.; Wesztergom, V.; Nenovski, P. Multipoint ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005. Nat. Hazard Earth Syst. Sci. 2008, 8, 501–507. [Google Scholar] [CrossRef]
- Hobara, Y.; Koons, H.; Roeder, J.; Yumoto, K.; Hayakawa, M. Characteristics of ULF magnetic anomaly before earthquakes. Phys. Chem. Earth Parts A/B/C 2004, 29, 437–444. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, P.; Mamatemin, A.; Xu, X. Detection of ULF electromagnetic emissions as a precursor to two earthquakes in China. Earthq. Sci. 2011, 24, 601–607. [Google Scholar] [CrossRef]
- Hu, X.; Teng, Y.; Zhang, L. Design of borehole magnetometer. Prog. Geophys. 2011, 26, 1849–1858. [Google Scholar] [CrossRef]
- He, C.; Feng, Z. Application of polarization method to geomagnetic data from the station Chengdu. Acta Seismol. Sin. 2017, 39, 558–564. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, S.; Jia, L.; Liu, L.; Teng, Y. Applying of Polarization Method to Extract Short Term Seismic Anomaly From Geomagnetic Second Data. Prog. Geophys. 2020, 35, 488–494. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Gong, J.; Guo, Y.; Fan, L.; Shi, S. Anomaly characteristics of Shanxi geomagnetic array data before Yuanping M4.2 earthquake. Prog. Earthq. Sci. 2023, 10, 469–475. [Google Scholar] [CrossRef]
- Xu, W.Y. Past, present, and future of geomagnetic indices. Prog. Geophys. 2009, 24, 830–841. [Google Scholar] [CrossRef]
- Yang, D.; He, Y.; Chen, C.; Qian, J.V. A new index to represent the variation rate of geomagnetic activity. Earthq. Sci. 2010, 23, 343–348. [Google Scholar] [CrossRef]
- Zhang, C.D. The magnetic characteristics of crust beneath Xizhang (Tibetan) plateau deduced from satellite magnetic anomaly. Prog. Geophys. 2002, 17, 325–330. [Google Scholar]
- Du, A.M.; Zhou, Z.J.; Xu, W.Y.; Yang, F. Generation Mechanism of ULF electromagnetic emissions before the ML = 7.1 earthquake at Hotan. Chin. J. Geophys. 2004, 47, 939–945. [Google Scholar]
- Su, W.; Wang, P.; Feng, L.; Ma, Z.; Zhao, Y. Evolution characteristics of precursory anomalies before the MS6.4 Menyuan, Qinghai, earthquake in 2016. Acta Seismol. Sin. 2020, 42, 24–33. [Google Scholar]
- Liu, L.; Gao, X.; Su, W.G.; Zhao, Y.H.; Li, X.; Feng, L.L. Characteristics of fluid group anomalies in Qinghai area before MS6.9 Menyuan earthquake on 8 January. Acta Seismol. Sin. 2022, 44, 245–249. [Google Scholar]
- Li, X.; Feng, L.L.; Zhao, Y.H.; Liu, L.; Gou, Z.D.; Fan, W.J.; He, M.Q.; Liao, X.F.; Yisimayili, A. Anomalous characteristics of geomagnetic vertical strength polarization before the 2017 Milin MS 6.9 earthquake in Tibet. Acta Seismol. Sin. 2021, 43, 584–594. [Google Scholar]
- Chen, G.; Bartholomew, M.; Liu, D.; Cao, K.; Feng, M.; Wang, D. Paleo-earthquakes along the Zheduotang fault, Xianshuihe fault system, eastern Tibet: Implications for seismic hazard evaluation. J. Earth Sci. 2022, 33, 1233–1245. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, C. Qualitative analyses of correlations between strong ground motions of the three large earthquakes and landslide distributions. J. Earth Sci. 2023, 34, 369–380. [Google Scholar] [CrossRef]
No. | Anomaly Date | Anomaly Station Percentage | Eq No. | Magnitude | Epicenter | Date | 5~25 s | 25~50 s | 50~100 s |
---|---|---|---|---|---|---|---|---|---|
1 | 20150118 | 71.70% | 1 | 5.8 8.2 6.5 | Azuoqi Nepal Pishan Xinjiang | 20150415 20150425 20150703 | ↓ | ↓ | ↓ |
2 | 20150213 | 40.74% | ↓ | ↓ | ↑ | ||||
20150118 + 20150213 | ↓ | ↓ | ↓ | ||||||
3 | 20150718 | 38.46% | 2 | 6.5 | Pishan Xinjiang | 20150703 | ↓ | ↑ | ↓ |
4 | 20150929 | 24.14% | 3 | 7.7 6.4 | Tajikistan Menyuan Qinghai | 20151207 20160121 | ↓ | ↑ | ↓ |
5 | 20151123 | 67.24% | ↓ | ↓ | ↓ | ||||
20150929 + 20151123 | ↓ | ↓ | ↑ | ||||||
6 | 20160130 | 51.52% | 4 | 6.4 5.4 | Kyrgyzstan Cangwu Guangxi | 20160626 20160731 | ↓ | ↓ | ↑ |
7 | 20160817 | 45.31% | 5 | 6.3 6.8 6.2 | Maidu Qinghai Aketedu Xinjiang Hutubi Xinjiang | 20161017 20161125 20161208 | ↓ | ↓ | ↓ |
8 | 20160915 | 52.38% | ↓ | ↓ | ↓ | ||||
20160817 + 20160915 | ↓ | ↑ | ↑ | ||||||
9 | 20161202 | 43.55% | 6 | 6.2 | Hutubi Xinjiang | 20161208 | ↓ | ↓ | ↑ |
10 | 20170113 | 20.63% | 7 | 6.2 | Hutubi Xinjiang | 20161208 | ↓ | ↑ | ↑ |
11 | 20170214 | 22.58% | 8 | 7.1 6.6 | Jiuzhaigou Sichuan Jinghe Xinjiang | 20170808 20170809 | ↑ | ↑ | ↑ |
12 | 20170318 | 45.31% | ↓ | ↑ | ↑ | ||||
20170214 + 20170318 | ↑ | ↑ | ↑ | ||||||
13 | 20170828 | 47.69% | 9 | 6.6 | Jinghe Xinjiang | 20170809 | ↓ | ↑ | ↑ |
14 | 20171031 | 29.69% | 10 | 6.9 | Miling Tibet | 20171118 | ↑ | ↑ | ↑ |
15 | 20180417 | 28.99% | 11 | 5.9 | Mojiang Yunnan | 20180908 | ↓ | ↑ | ↑ |
16 | 20180612 | 43.94% | ↓ | ↓ | ↑ | ||||
20180417 + 20180612 | ↓ | ↑ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faheem, H.; Li, X.; Zhu, W.; Ji, Y.; Feng, L.; Zhu, Y. Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes. Sensors 2024, 24, 3240. https://doi.org/10.3390/s24103240
Faheem H, Li X, Zhu W, Ji Y, Feng L, Zhu Y. Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes. Sensors. 2024; 24(10):3240. https://doi.org/10.3390/s24103240
Chicago/Turabian StyleFaheem, Haris, Xia Li, Weiling Zhu, Yingfeng Ji, Lili Feng, and Ye Zhu. 2024. "Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes" Sensors 24, no. 10: 3240. https://doi.org/10.3390/s24103240
APA StyleFaheem, H., Li, X., Zhu, W., Ji, Y., Feng, L., & Zhu, Y. (2024). Refinement of Different Frequency Bands of Geomagnetic Vertical Intensity Polarization Anomalies before M > 5.5 Earthquakes. Sensors, 24(10), 3240. https://doi.org/10.3390/s24103240