FEM Modeling Strategies: Application to Mechanical and Dielectric Sensitivities of Love Wave Devices in Liquid Medium
Abstract
1. Introduction
2. Context and State of the Art
2.1. Love Wave Sensor in Liquid Medium—A Growing Complexity
2.2. A Brief History of FEM Modeling of Love Wave Sensor
3. Material and Methods
3.1. Representative Volume Element Model
3.2. 2.5D Model
- : calculated input impedance;
- : calculated output impedance;
- : estimated impedance by the 2.5D model.
3.3. Used Love Wave Device and Liquid Samples
4. Results
4.1. RVE Simulation of Love Wave Device Electrical Responses
4.2. 2.5D Model: Estimation of Love Wave Device Electrical Responses
4.3. Discussions on the Love Wave Dielectric Sensing Estimation
5. Results: Love Wave Acoustic and Electro-Acoustic Sensing Estimation
5.1. RVE Model-Based Estimation of Love Wave Device Acoustic Sensing Responses
5.2. 2.5D Model-Based Estimation of Love Wave Electro-Acoustic Sensing Responses
5.2.1. 2.5D Model Simulation Results
5.2.2. Reducing the Computation Time with LW Sensor 2.5D Model
5.3. Discussion about the Electro-Acoustic Sensing Estimation
6. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, Y.; Takeuchi, M.; Nakamura, K.; Hirota, K. Coupled-mode theory of SAW periodic structures. Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 1993, 76, 87–98. [Google Scholar] [CrossRef]
- Park, K.c.; Kagawa, Y.; Tsuchiya, T.; Cho, K.r. Optimization of the frequency characteristics in saw filter design. Inverse Probl. Eng. 2000, 8, 473–493. [Google Scholar] [CrossRef]
- Wang, W.; He, S. Theoretical analysis on response mechanism of polymer-coated chemical sensor based Love Wave in viscoelastic media. Sens. Actuators B Chem. 2009, 138, 432–440. [Google Scholar] [CrossRef]
- McHale, G. Generalized concept of shear horizontal acoustic plate mode and Love wave sensors. Meas. Sci. Technol. 2003, 14, 1847–1853. [Google Scholar] [CrossRef]
- Kovacs, G.; Lubking, G.W.; Vellekoop, M.J.; Venema, A. Love Waves for (bio)chemical sensing in liquids. Proc. IEEE Ultrason. Symp. 1992, 1992, 281–285. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.I.; Fernandez-Diaz, R.; Arnau-Vives, A.; March-Iborra, C. Mass sensitivity evaluation of a Love Wave sensor using the 3D Finite Element Method. In Proceedings of the 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA, 1–4 June 2010; pp. 228–231. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, J.; Zou, L.; Zou, Y.; Lang, L.; Gao, F.; Hu, N.; Wang, P. A novel sensitive cell-based Love Wave biosensor for marine toxin detection. Biosens. Bioelectron. 2016, 77, 573–579. [Google Scholar] [CrossRef]
- El Baroudi, A.; Le Pommellec, J.Y. Viscoelastic fluid effect on the surface wave propagation. Sens. Actuators A Phys. 2019, 291, 188–195. [Google Scholar] [CrossRef]
- Rube, M.; Tamarin, O.; Sebeloue, M.; Sadli, I.; Hallil, H.; Linguet, L.; Rebiere, D.; Dejous, C. Unconventional Protocol for SAW Sensor: Multi-Physic Response Enrichment in Liquid Medium. IEEE Sens. J. 2022, 22, 11345–11354. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.I.; March-Iborra, C.; Montoya-Baides, A.; Arnau-Vives, A. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors 2009, 9, 5740. [Google Scholar] [CrossRef] [PubMed]
- Jakoby, B.; Vellekoop, M.J. Viscosity sensing using a Love-wave device. Sens. Actuators A Phys. 1998, 68, 275–281. [Google Scholar] [CrossRef]
- Hashimoto, K.Y. Interdigital Transducers. In Surface Acoustic Wave Devices in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 47–85. [Google Scholar] [CrossRef]
- Luo, W.; Yuan, Y.; Wang, Y.; Fu, Q.; Xia, H.; Li, H. Fast and Accurate Finite Transducer Analysis Method for Wireless Passive Impedance-Loaded SAW Sensors. Sensors 2018, 18, 3988. [Google Scholar] [CrossRef]
- Lysmer, J.; Drake, L. A Finite Element Method for Seismology. Methods Comput. Phys. 1972, 11, 181–216. [Google Scholar] [CrossRef]
- Ventura, P.; Hode, J.; Desbois, J.; Solal, H. Combined FEM and Green’s function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 1259–1274. [Google Scholar] [CrossRef]
- Ippolito, S.J.; Kalantar-Zadeh, K.; Powell, D.A.; Wlodarski, W. A 3-dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices. Proc. IEEE Ultrason. Symp. 2003, 1, 303–306. [Google Scholar] [CrossRef]
- Achour, B.; Attia, G.; Zerrouki, C.; Fourati, N.; Raoof, K.; Yaakoubi, N. Simulation/Experiment Confrontation, an Efficient Approach for Sensitive SAW Sensors Design. Sensors 2020, 20, 4994. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.Y. Surface Acoustic Wave Devices in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2000; Volume 6, p. 103. [Google Scholar] [CrossRef]
- Wang, W.; Lee, K.; Woo, I.; Park, I.; Yang, S. Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sens. Actuators A Phys. 2007, 139, 2–6. [Google Scholar] [CrossRef]
- Banu Priya, R.; Venkatesan, T.; Pandiyarajan, G.; Pandya, H.M. SAW Devices—A Comprehensive Review. J. Environ. Nanotechnol. 2014, 3, 106–115. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Zhao, X.; Zhi, S.; Qiu, L.; Fu, S.; Wang, W. A General FEM Model for Analysis of Third-Order Nonlinearity in RF Surface Acoustic Wave Devices Based on Perturbation Theory. Micromachines 2022, 13, 1116. [Google Scholar] [CrossRef] [PubMed]
- Ramshani, Z.; Reddy, A.S.; Narakathu, B.B.; Wabeke, J.T.; Obare, S.O.; Atashbar, M.Z. SH-SAW sensor based microfluidic system for the detection of heavy metal compounds in liquid environments. Sens. Actuators B Chem. 2015, 217, 72–77. [Google Scholar] [CrossRef]
- Kustanovich, K.; Yantchev, V.; Doosti, B.A.; Gözen, I.; Jesorka, A. A microfluidics-integrated impedance/surface acoustic resonance tandem sensor. Sens. Bio-Sens. Res. 2019, 25, 100291. [Google Scholar] [CrossRef]
- Hu, X.; Yang, W. Planar capacitive sensors – designs and applications. Sens. Rev. 2010, 30, 24–39. [Google Scholar] [CrossRef]
- Kiełczyński, P.; Szalewski, M.; Balcerzak, A. Effect of a viscous liquid loading on Love Wave propagation. Int. J. Solids Struct. 2012, 49, 2314–2319. [Google Scholar] [CrossRef]
- Rube, M.; Tamarin, O.; Hemour, S.; Sebeloue, M.; Choudhari, A.; Sadli, I.; Linguet, L.; Rebiere, D.; Dejous, C. A behavior-descriptive model of Love Wave sensor in liquid medium for circuit-design and analysis with QucsStudio. In Proceedings of the 2021 IEEE Sensors, 31 October–4 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Bruckner, G.; Bardong, J. Wireless Readout of Multiple SAW Temperature Sensors. Sensors 2019, 19, 3077. [Google Scholar] [CrossRef] [PubMed]
- Lurz, F.; Ostertag, T.; Scheiner, B.; Weigel, R.; Koelpin, A. Reader architectures for wireless surface acoustic wave sensors. Sensors 2018, 18, 1734. [Google Scholar] [CrossRef]
- Gongi, W.; Rube, M.; Ben Ouada, H.; Ben Ouada, H.; Tamarin, O.; Dejous, C. Elaboration and Characterization of a New Heavy Metal Sensor Functionalized by Extracellular Polymeric Substances Isolated from a Tunisian Thermophilic Microalga Strain Graesiella sp. Sensors 2023, 23, 803. [Google Scholar] [CrossRef]
RVE | 2.5D | |
---|---|---|
Liquid dielectric properties simulation only () | Possible for | Yes, for all frequencies (tested from 1 MHz up to 1 GHz) |
Liquid mechanical properties simulation only (, ) | Resonance frequency | All parameters of interest (S-parameters) |
Liquid electro-mechanical (dielectric and mechanical) properties estimation (, , ) | Simulation of one mechanism at a time | Simulation of both mechanisms |
Calculation time | 20 s/point | 10 min/point |
Calculation resources needed | Light (RAM < 8 Go) | Heavy (RAM > 64 Go) |
Accuracy with measurements for dielectric properties | Good | Good |
Accuracy with measurements for mechanical properties | Very good | Good and upgradable |
Accuracy with measurements for dielectric and mechanical properties | Good and upgradable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rube, M.; Tamarin, O.; Choudhari, A.; Sebeloue, M.; Rebiere, D.; Dejous, C. FEM Modeling Strategies: Application to Mechanical and Dielectric Sensitivities of Love Wave Devices in Liquid Medium. Sensors 2024, 24, 2976. https://doi.org/10.3390/s24102976
Rube M, Tamarin O, Choudhari A, Sebeloue M, Rebiere D, Dejous C. FEM Modeling Strategies: Application to Mechanical and Dielectric Sensitivities of Love Wave Devices in Liquid Medium. Sensors. 2024; 24(10):2976. https://doi.org/10.3390/s24102976
Chicago/Turabian StyleRube, Maxence, Ollivier Tamarin, Asawari Choudhari, Martine Sebeloue, Dominique Rebiere, and Corinne Dejous. 2024. "FEM Modeling Strategies: Application to Mechanical and Dielectric Sensitivities of Love Wave Devices in Liquid Medium" Sensors 24, no. 10: 2976. https://doi.org/10.3390/s24102976
APA StyleRube, M., Tamarin, O., Choudhari, A., Sebeloue, M., Rebiere, D., & Dejous, C. (2024). FEM Modeling Strategies: Application to Mechanical and Dielectric Sensitivities of Love Wave Devices in Liquid Medium. Sensors, 24(10), 2976. https://doi.org/10.3390/s24102976