Brain Connectivity Analysis in Distinct Footwear Conditions during Infinity Walk Using fNIRS
Abstract
:1. Introduction
2. Materials
2.1. Participant Selection and Ethical Consideration
2.2. Experimental Paradigm and Instructions
2.3. Montage and Data Acquisition
3. Connectivity Model
3.1. Low-Rank Representation
- A coordinate matrix is constructed containing the 3D coordinates .
- Using a K-means method with random initialization and Euclidean distances, we find M clusters. As a result, each channel k is assigned a label . These clusters characterize spatially connected areas.
- The is defined as the median value of for each label ℓ.
- There is a strong rationale for not using an alternate estimator such as the mean :The median is a robust estimator that can reduce the impact of outliers in the estimations. Therefore, even when a few channels have a low signal-to-noise ratio, the median may provide a more accurate description of the hemodynamic signals in a particular region.
- Finally, let be the projected time series defined by
3.2. Brain Dynamics: Condition-Driven Effective Connectivity
4. Results and Discussion
4.1. Infinity Pattern
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
fNIRS | Functional near-infrared spectroscopy |
Deoxygenated hemoglobin | |
Oxygenated hemoglobin | |
ROI | Regions of interest |
References
- Aali, S.; Rezazadeh, F.; Badicu, G.; Grosz, W.R. Effect of Heel-First Strike Gait on Knee and Ankle Mechanics. Medicina 2021, 57, 657. [Google Scholar] [CrossRef]
- Hintermann, B.; Nigg, B.M. Pronation in runners. Sport. Med. 1998, 26, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.O.; Buist, I.; Parner, E.T.; Nohr, E.A.; Sørensen, H.; Lind, M.; Rasmussen, S. Foot pronation is not associated with increased injury risk in novice runners wearing a neutral shoe: A 1-year prospective cohort study. Br. J. Sport. Med. 2014, 48, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Myers, T. Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Lorenz, D.S.; Pontillo, M. Is There Evidence to Support a Forefoot Strike Pattern in Barefoot Runners? A Review. Sport. Health A Multidiscip. Approach 2012, 4, 480–484. [Google Scholar] [CrossRef]
- Gazzaniga, M.S. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef]
- Serrien, D.J.; Ivry, R.B.; Swinnen, S.P. Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 2006, 7, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Sunbeck, D. Infinity Walk: Preparing Your Mind to Learn; Jalmar Press: Fawnskin, CA, USA, 1996. [Google Scholar]
- Szymanski, T.J. Infinity Walk: Preparing Your Mind to Learn! Res. Teach. Dev. Educ. 1997, 13, 113–115. [Google Scholar]
- Sunbeck, D.T. “Figure-Eight” Track, Apparatus and Method for Sensory-Motor Exercise. U.S. Patent 7,115,071, 2006. [Google Scholar]
- Sunbeck, D. The Complete Infinity Walk—Book I, The Physical Self; Leonardo Foundation Press: Los Angeles, CA, USA, 2002. [Google Scholar]
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Rosen, A.; Mukherjee, M.; Yentes, J.; McGrath, M.; Maerlender, A. O19 Cortical activation variability is altered in individuals with chronic ankle instability during single limb postural control. BMJ J. 2017, 51, A7. [Google Scholar] [CrossRef]
- Jafarnezhadgero, A.; Alavi-Mehr, S.M.; Granacher, U. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue. PLoS ONE 2019, 14, e0216818. [Google Scholar] [CrossRef] [PubMed]
- Braga, U.M.; Mendonca, L.D.; Mascarenhas, R.O.; Alves, C.O.; Renato Filho, G.; Resende, R.A. Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment. Gait Posture 2019, 74, 242–249. [Google Scholar] [CrossRef]
- Khan, H.; Naseer, N.; Yazidi, A.; Eide, P.K.; Hassan, H.W.; Mirtaheri, P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review. Front. Hum. Neurosci. 2021, 14, 605. [Google Scholar] [CrossRef]
- Naseer, N.; Ayaz, H.; Dehais, F. Portable and wearable brain technologies for neuroenhancement and neurorehabilitation. BioMed Res. Int. 2018, 2018, 1806374. [Google Scholar] [CrossRef] [PubMed]
- Saikia, M.J.; Besio, W.G.; Mankodiya, K. The validation of a portable functional nirs system for assessing mental workload. Sensors 2021, 21, 3810. [Google Scholar] [CrossRef]
- Izzetoglu, M.; Izzetoglu, K.; Bunce, S.; Ayaz, H.; Devaraj, A.; Onaral, B.; Pourrezaei, K. Functional near-infrared neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Naseer, N.; Nazeer, H.; Khan, M.J.; Khan, R.A.; Shahbaz Khan, U. Analyzing classification performance of fNIRS-BCI for gait rehabilitation using deep neural networks. Sensors 2022, 22, 1932. [Google Scholar] [CrossRef]
- Rosen, A.B.; Yentes, J.M.; McGrath, M.L.; Maerlender, A.C.; Myers, S.A.; Mukherjee, M. Alterations in cortical activation among individuals with chronic ankle instability during single-limb postural control. J. Athl. Train. 2019, 54, 718–726. [Google Scholar] [CrossRef]
- Khan, H.; Nazeer, H.; Engell, H.; Naseer, N.; Korostynska, O.; Mirtaheri, P. Prefrontal Cortex Activation Measured during Different Footwear and Ground Conditions Using fNIRS—A Case Study. In Proceedings of the 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Bandung, Indonesia, 28–30 April 2021; pp. 1–6. [Google Scholar]
- Khan, H.; Qureshi, N.K.; Yazidi, A.; Engell, H.; Mirtaheri, P. Single-leg stance on a challenging surface can enhance cortical activation in the right hemisphere—A case study. Heliyon 2023, 9, e13628. [Google Scholar] [CrossRef]
- Youssofzadeh, V.; Zanotto, D.; Wong-Lin, K.; Agrawal, S.K.; Prasad, G. Directed functional connectivity in fronto-centroparietal circuit correlates with motor adaptation in gait training. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Vitorio, R.; Stuart, S.; Rochester, L.; Alcock, L.; Pantall, A. fNIRS response during walking—Artefact or cortical activity? A systematic review. Neurosci. Biobehav. Rev. 2017, 83, 160–172. [Google Scholar] [CrossRef]
- Seth, A.K.; Chorley, P.; Barnett, L.C. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 2013, 65, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Pelicioni, P.H.; Tijsma, M.; Lord, S.R.; Menant, J. Prefrontal cortical activation measured by fNIRS during walking: Effects of age, disease and secondary task. PeerJ 2019, 7, e6833. [Google Scholar] [CrossRef] [PubMed]
- Machado, Á.S.; Bombach, G.D.; Duysens, J.; Carpes, F.P. Differences in foot sensitivity and plantar pressure between young adults and elderly. Arch. Gerontol. Geriatr. 2016, 63, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Lo, O.Y.; Halko, M.A.; Zhou, J.; Harrison, R.; Lipsitz, L.A.; Manor, B. Gait speed and gait variability are associated with different functional brain networks. Front. Aging Neurosci. 2017, 9, 390. [Google Scholar] [CrossRef]
- Morais, G.A.Z.; Balardin, J.B.; Sato, J.R. fNIRS optodes’ location decider (fOLD): A toolbox for probe arrangement guided by brain regions-of-interest. Sci. Rep. 2018, 8, 3341. [Google Scholar] [CrossRef]
- Fonov, V.; Evans, A.C.; Botteron, K.; Almli, C.R.; McKinstry, R.C.; Collins, D.L. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 2011, 54, 313–327. [Google Scholar] [CrossRef]
- Nicolai, E.; Michelson, N.; Settell, M.; Hara, S.; Trevathan, J.; Asp, A.; Stocking, K.; Lujan, J.; Kozai, T.; Ludwig, K. Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. Micromachines 2018, 9, 494. [Google Scholar] [CrossRef]
- Lutkepohl, H. New Introduction to Multiple Time Series Analysis; New York Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples, 2nd ed.; Springer Texts in Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Pinto-Orellana, M.A.; Mirtaheri, P.; Hammer, H.L.; Ombao, H. SCAU: Modeling Spectral Causality for Multivariate Time Series with Applications to Electroencephalograms. arXiv 2021, arXiv:2105.06418. [Google Scholar]
- Ombao, H.; Pinto, M. Spectral Dependence. arXiv 2021, arXiv:2103.17240. [Google Scholar] [CrossRef]
- Sak, H.; Senior, A.W.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv 2014, arXiv:1402.1128. [Google Scholar]
- Trapeau, R.; Thoret, E.; Belin, P. The Temporal Voice Areas are not “just” Speech Areas. Front. Neurosci. 2022, 16, 1075288. [Google Scholar] [CrossRef] [PubMed]
Subjects | Left Leg (Degrees) | Right Leg (Degrees) |
---|---|---|
01 | 12 | 06 |
02 | 08 | 11 |
03 | 17 | 17 |
04 | 12 | 09 |
05 | 17 | 17 |
Condition | Description |
---|---|
1 | Barefooted walk on plain surface |
2 | Walking with flat-insole sandals |
3 | Walking with pronation-corrected sandals or medially wedged sandals |
4 | Walking with personal shoes |
5 | Walking with SGL technology shoe, referred to as GAITLINE AS shoes |
Sr. No. | Brain Region | Shared Brodmann Areas | EEG 128 Positions | Description |
---|---|---|---|---|
1 | Motoric areas | 6, 8, 44 | FFC4h, FFC3h | Agranular frontal, Intermediate frontal, Opercular |
2 | Somatosensory area | 7, 40 | CCP4, C3h | Superior parietal, Supramarginal |
3 | Temporal area | 21, 22, 43 | TTP8h, TTP7h | Middle temporal, Superior temporal, Subcentral |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Pinto-Orellana, M.A.; Mirtaheri, P. Brain Connectivity Analysis in Distinct Footwear Conditions during Infinity Walk Using fNIRS. Sensors 2023, 23, 4422. https://doi.org/10.3390/s23094422
Khan H, Pinto-Orellana MA, Mirtaheri P. Brain Connectivity Analysis in Distinct Footwear Conditions during Infinity Walk Using fNIRS. Sensors. 2023; 23(9):4422. https://doi.org/10.3390/s23094422
Chicago/Turabian StyleKhan, Haroon, Marco Antonio Pinto-Orellana, and Peyman Mirtaheri. 2023. "Brain Connectivity Analysis in Distinct Footwear Conditions during Infinity Walk Using fNIRS" Sensors 23, no. 9: 4422. https://doi.org/10.3390/s23094422
APA StyleKhan, H., Pinto-Orellana, M. A., & Mirtaheri, P. (2023). Brain Connectivity Analysis in Distinct Footwear Conditions during Infinity Walk Using fNIRS. Sensors, 23(9), 4422. https://doi.org/10.3390/s23094422