Fast Neutron Measurement System Using Prompt Gamma Neutron Activation Solid Converter: Monte Carlo Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kouzes, R.T.; Ely, J.H.; Erikson, L.E.; Kernan, W.J.; Lintereur, A.T.; Siciliano, E.R.; Stephens, D.L.; Stromswold, D.C.; Van Ginhoven, R.M.; Woodring, M.L. Neutron detection alternatives to 3He for national security applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 623, 1035–1045. [Google Scholar] [CrossRef]
- Alfassi, Z.; Zlatin, T.; German, U. Simultaneous measurement of gamma-rays and neutron fluences using a HPGE detector. J. Radioanal. Nucl. Chem. 2006, 268, 237–241. [Google Scholar] [CrossRef]
- Miyake, A.; Nishioka, T.; Singh, S.; Morii, H.; Mimura, H.; Aoki, T. A CdTe detector with a Gd converter for thermal neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 654, 390–393. [Google Scholar] [CrossRef]
- Meaney, K.D.; Kim, Y.; Hoffman, N.M.; Geppert-Kleinrath, H.; Jorgenson, J.; Hochanadel, M.; Appelbe, B.; Crilly, A.; Basu, R.; Saw, E.Y.; et al. Design of multi neutron-to-gamma converter array for measuring time resolved ion temperature of inertial confinement fusion implosions. Rev. Sci. Instrum. 2022, 93, 083520. [Google Scholar] [CrossRef] [PubMed]
- Holm, P.; Peräjärvi, K.; Sihvonen, A.-P.; Siiskonen, T.; Toivonen, H. Neutron detection with a NaI spectrometer using high-energy photons. Nucl. Instrum. Methods Phys. Res. Sect. A 2013, 697, 59–63. [Google Scholar] [CrossRef]
- Tang, W.; Liang, J.-G.; Ge, Y.; Zhang, Q. A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation. Nucl. Sci. Tech. 2022, 33, 154. [Google Scholar] [CrossRef]
- Reichel, N.; Evans, M.; Allioli, F.; Mauborgne, M.-L.; Nicoletti, L.; Haranger, F.; Laporte, N.; Stoller, C.; Cretoiu, V.; El Hehiawy, E.; et al. Sourceless neutron-gamma density (SNGD): Principles, field-test results and log quality control of a radioisotope-free bulk-density measurement. Petrophys. SPWLA J. Form. Eval. Reser. Descr. 2013, 54, 91–103. [Google Scholar]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists; Springer: Dordrecht, The Netherlands, 2007; Volume 692. [Google Scholar]
- Randall, R.R.; Fertl, W.F.; Hopkinson, E.C. Time-derived sigma for pulsed neutron capture logging. J. Petrol. Technol. 1983, 35, 1187–1191. [Google Scholar] [CrossRef]
- Han, X.; Smith, H.D., Jr.; Duenckel, R.; Zhang, J. Identification of Cement in Subterranean Borehole Regions Using a Ratio of Capture to Inelastic Gamma Rays. U.S. Patent No. 11,078,771, 3 August 2021. [Google Scholar]
- Stoller, C.; Adolph, B.; Berheide, M.; Brill, T.; Clevinger, P.; Crary, S.; Crowder, B.; Fricke, S.; Grau, J.; Hackbart, M.; et al. Use of LaBr3 for downhole spectroscopic applications. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; pp. 191–195. [Google Scholar] [CrossRef]
- Roscoe, B.A.; Grau, J.A.; Wraight, P.D. Statistical precision of neutron-induced gamma ray spectroscopy measurements. Log Anal. 1987, 28. [Google Scholar]
- Odom, R.C. Pulsed Neutron Decay Tool for Measuring Gamma Radiation Energy Spectra for Fast Neutron Inelastic Collisions and Thermal Neutron Capture Events. U.S. Patent No. 5,374,823, 28 October 1993. [Google Scholar]
- Sowerby, B.D. Nuclear Techniques in the Coal Industry. In Proceedings of the Final Research Co-Ordination Meeting, Krakow, Poland, 9–12 May 1994. [Google Scholar]
- Clayton, C.; Wormald, M.; Schweitzer, J.S. IAEA-SM-308-21; Nuclear Methods for On-Line Analysis of Metalliferous and Nometalliferous Minerals. International Atomic Energy Agency (IAEA): Vienna, Austria, 1991. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:22043591 (accessed on 1 March 2023).
- Hussein, E.M.A.; Waller, E.J. Review of one-side approaches to radiographic imaging for detection of explosives and narcotics. Radiat. Meas. 1998, 29, 581–591. [Google Scholar] [CrossRef]
- Yan, M.; Wakabayashi, Y.; Takamura, M.; Ikeda, Y.; Otake, Y. Optimization study of chlorine detection sensitivity in concrete based on prompt gamma analysis using 252Cf neutron source. Appl. Radiat. Isot. 2022, 188, 110393. [Google Scholar] [CrossRef] [PubMed]
- Walg, J.; Feldman, J.; Izarzar, A.; Rodinianski, A.; Mishani, E.; Orion, I. Cyclotron-produced neutrons measurements using Chlorine activation. Nucl. Inst. Methods Phys. Res. B 2021, 503, 1–5. [Google Scholar] [CrossRef]
- LA-UR-03-1987; MCNP—A General Monte Carlo N-Particle Transport Code, Version 5, X-5 Monte Carlo Team. Diagnostics Applications Group Los Alamos National Laboratory: Walnut Creek, CA, USA, 2003.
- Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol. 2011, 48, 1–30. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Chapter 10. [Google Scholar]
Element | Cross Sections Series |
---|---|
Zinc (Zn) | .42C LLNL |
Titanium (Ti) | .61C B-VI.8 |
Scandium (Sc) | .62C B-VI.8 |
Indium (In) | .60C B-VI.0 |
Copper (Cu) | .61C B-VI.8 |
Cadmium (Cd) | .42C LLNL |
Vanadium (V) | .62C B-VI.8 |
Cobalt (Co) | .60C B-VI.0 |
Material | Neutron Energy (MeV) | |||||
---|---|---|---|---|---|---|
0.02 | 1 | 1.2 | 1.6 | 2.2 | 3 | |
KCl + In | Yes | No | Yes | Yes | No | No |
KCl + Cd | Yes | No | No | No | No | No |
KCl + Ti | Yes | No | Yes | Yes | No | No |
KCl + V | No | Yes | Yes | Yes | Yes | Yes |
KCl + Cu | No | Yes | Yes | Yes | Yes | Yes |
KCl + Co | No | No | No | Yes | Yes | Yes |
KCl + Sc | No | No | No | No | No | No |
KCl + Zn | No | No | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walg, J.; Orion, I. Fast Neutron Measurement System Using Prompt Gamma Neutron Activation Solid Converter: Monte Carlo Study. Sensors 2023, 23, 4133. https://doi.org/10.3390/s23084133
Walg J, Orion I. Fast Neutron Measurement System Using Prompt Gamma Neutron Activation Solid Converter: Monte Carlo Study. Sensors. 2023; 23(8):4133. https://doi.org/10.3390/s23084133
Chicago/Turabian StyleWalg, Jonathan, and Itzhak Orion. 2023. "Fast Neutron Measurement System Using Prompt Gamma Neutron Activation Solid Converter: Monte Carlo Study" Sensors 23, no. 8: 4133. https://doi.org/10.3390/s23084133
APA StyleWalg, J., & Orion, I. (2023). Fast Neutron Measurement System Using Prompt Gamma Neutron Activation Solid Converter: Monte Carlo Study. Sensors, 23(8), 4133. https://doi.org/10.3390/s23084133