Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms
Abstract
:1. Introduction
2. Background Study
3. Materials and Methods
3.1. Dataset
3.1.1. Car-Hacking Dataset
3.1.2. UNSW-NB15 Dataset
3.2. Pre-Processing Method
3.3. Machine Learning Algorithms
3.3.1. k-Nearest Neighbour (KNN)
3.3.2. Decision Trees
3.4. Deep Learning Models
3.4.1. Long Short-Term Memory (LSTM)
3.4.2. Deep Autoencoder Algorithms
3.5. Performance Measurements
4. Experiments
4.1. Results
Results of the LSTM and Deep Autoencoder
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerra, E. Planning for cars that drive themselves: Metropolitan Planning Organizations, regional transportation plans, and autonomous vehicles. J. Plan. Educ. Res. 2016, 36, 210–224. [Google Scholar] [CrossRef]
- Gov.UK. Center for Connected and Autonomous Vehicles. 2018. Available online: https://www.gov.uk/government/organisations/centre-for-connected-and-autonomous-vehicles (accessed on 21 December 2022).
- Connected and Autonomous Vehicle Research and Development Projects. 2018. Available online: https://www.gov.uk/government/publications/connected-and-autonomous-vehicle-research-and-development-projects (accessed on 20 January 2023).
- Connected and Autonomous Vehicles: The Future? 2018. Available online: https://publications.parliament.uk/pa/ld201617/ldselect/ldsctech/115/115.pdf (accessed on 15 January 2023).
- Connected and Autonomous Vehicles Bsi Group. 2018. Available online: https://www.bsigroup.com/en-GB/Innovation/cav/ (accessed on 25 January 2023).
- Zhang, L.; Yang, F.; Lei, Y. Tree-based intermittent connection fault diagnosis for controller area network. IEEE Trans. Veh. Technol. 2019, 68, 9151–9161. [Google Scholar] [CrossRef]
- Fragkos, G.; Minwalla, C.; Plusquellic, J.; Tsiropoulou, E.E. Artificially Intelligent Electronic Money. IEEE Consum. Electron. Mag. 2021, 10, 81–89. [Google Scholar] [CrossRef]
- Iorio, M.; Reineri, M.; Risso, F.; Sisto, R.; Valenza, F. Securing SOME/IP for in-vehicle service protection. IEEE Trans. Veh. Technol. 2020, 69, 13450–13466. [Google Scholar] [CrossRef]
- Choi, W.; Jo, H.J.; Woo, S.; Chun, J.Y.; Park, J.; Lee, D.H. Identifying ecus using inimitable characteristics of signals in controller area networks. IEEE Trans. Veh. Technol. 2018, 67, 4757–4770. [Google Scholar] [CrossRef]
- Jeong, W.; Han, S.; Choi, E.; Lee, S.; Choi, J.W. CNN-based adaptive source node identifier for controller area network (CAN). IEEE Trans. Veh. Technol. 2020, 69, 13916–13920. [Google Scholar] [CrossRef]
- Xie, G.; Yang, L.T.; Liu, Y.; Luo, H.; Peng, X.; Li, R. Security enhancement for real-time independent in-vehicle CAN-FD messages in vehicular networks. IEEE Trans. Veh. Technol. 2021, 70, 5244–5253. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Kumar, S. Cache agent-based geocasting in VANETs. Int. J. Inf. Commun. Technol. 2015, 7, 562–584. [Google Scholar] [CrossRef]
- Hossain, M.D.; Inoue, H.; Ochiai, H.; Fall, D.; Kadobayashi, Y. LSTM-Based Intrusion Detection System for In-Vehicle Can Bus Communications. IEEE Access 2020, 8, 185489–185502. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Rehman, A.; Ur Rehman, S.; Khan, M.; Alazab, M.; Thippa, R.G. Canintelliids: Detecting In-vehicle Intrusion Attacks on A Controller Area Network Using CNN and Attention-based GRU. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1456–1466. [Google Scholar]
- Qassim, H.; Verma, A.; Feinzimer, D. Compressed Residual-VGG16 CNN Model for Big Data Places Image Recognition. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 169–175. [Google Scholar]
- Zhang, H.; Gu, M.; Jiang, X.D.; Thompson, J.; Cai, H.; Paesani, S.; Santagati, R.; Laing, A.; Zhang, Y.; Yung, M.H.; et al. An Optical Neural Chip for Implementing Complex-valued Neural Network. Nat. Commun. 2021, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Zou, J.; Zhang, H.; Shi, Y.Z.; Luo, S.B.; Wang, N.; Cai, H.; Wan, L.X.; Wang, B.; Jiang, X.D.; et al. Space-efficient Optical Computing with an Integrated Chip Diffractive Neural Network. Nat. Commun. 2022, 13, 1044. [Google Scholar] [CrossRef] [PubMed]
- Autonomous Vehicles|Self-Driving Vehicles Enacted Legislation; NCSL: Washington, DC, USA, 2019.
- Madrigal, A.C. Inside Waymo’s Secret World for Training Self-Driving Cars. The Atlantic, 23 August 2017. [Google Scholar]
- Dikmen, M.; Burns, C.M. Autonomous driving in the real world: Experiences with tesla autopilot and summon. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA, 24–26 October 2016; ACM: New York, NY, USA, 2016; pp. 225–228. [Google Scholar]
- Eustice, R. University of Michigan’s Work Toward Autonomous Cars; Technical Report; University of Michigan: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Oucheikh, R.; Fri, M.; Fedouaki, F.; Hain, M. Deep Real-Time Anomaly Detection for Connected Autonomous Vehicles. Procedia Comput. Sci. 2020, 177, 456–461. [Google Scholar] [CrossRef]
- Narasimhamurthy, S.M.; Mehran, B. A Literature Review of Performance Metrics of Automated Driving Systems for On-Road Vehicles. Front. Future Transp. Sec. Connect. Mobil. Autom. 2021, 2, 759125. [Google Scholar]
- Gupta, R.; Tanwar, S.; Kumar, N.; Tyagi, S. Blockchain-based security attack resilience schemes for autonomous vehicles in industry 4.0: A systematic review. Comput. Electr. Eng. 2020, 86, 106717. [Google Scholar] [CrossRef]
- Radanliev, P.; De Roure, D.; Walton, R.; Van Kleek, M.; Montalvo, R.M.; Maddox, L.; Santos, O.; Burnap, P.; Anthi, E. Artificial intelligence and machine learning in dynamic cyber risk analytics at the edge. SN Appl. Sci. 2020, 2, 1773. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.S.; Jeong, S.; Park, J.-H.; Kim, H.K. Cybersecurity for autonomous vehicles: Review of attacks and defense. Comput. Sec. 2021, 103, 102150. [Google Scholar] [CrossRef]
- Sun, X.; Yu, F.R.; Zhang, P. A survey on cyber-security of connected and autonomous vehicles (CAVs). IEEE Trans. Intell. Transport. Syst. 2021, 23, 6240–6259. [Google Scholar] [CrossRef]
- Gao, C.; Wang, G.; Shi, W.; Wang, Z.; Chen, Y. Autonomous driving Security: State of the art and challenges. IEEE Internet Things J. 2021, 9, 7572–7595. [Google Scholar] [CrossRef]
- Chow, M.C.; Ma, M.; Pan, Z. Attack models and countermeasures for autonomous vehicles. In Internet of Things; Springer: Cham, Switzerland, 2021; pp. 375–401. [Google Scholar]
- Nguyen, H.P.D.; Nguyen, D.D. Drone application in smart cities: The general overview of security vulnerabilities and countermeasures for data communication. Stud. Syst. Decis. Control. 2021, 332, 185–210. [Google Scholar]
- Yaacoub, J.A.; Noura, H.N.; Salman, O.; Chehab, A. Robotics cyber security: Vulnerabilities, attacks, countermeasures, and recommendations. Int. J. Inf. Secur. 2022, 21, 115–158. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, P.; Jurcut, A.; Liyanage, M. MEC-enabled 5G Use Cases: A Survey on Security Vulnerabilities and Countermeasures. ACM Comput. Surv. 2022, 54, 1–37. [Google Scholar] [CrossRef]
- Campisi, T.; Severino, A.; Al-Rashid, M.; Pau, G. The development of the smart cities in the connected and autonomous vehicles (CAVs) era: From mobility patterns to scaling in cities. Infrastructures 2021, 6, 100. [Google Scholar] [CrossRef]
- Ribeiro, M.A.; Gursoy, D.; Chi, O.H. Customer acceptance of autonomous vehicles in travel and tourism. J. Travel Res. 2022, 61, 620–636. [Google Scholar] [CrossRef]
- Brovarone, E.V.; Scudellari, J.; Staricco, L. Planning the Transition to Autonomous Driving: A Policy Pathway Towards Urban Liveability. Cities 2021, 108, 102996. [Google Scholar] [CrossRef]
- Aldakkhelallah, A.; Simic, M. Autonomous vehicles in intelligent transportation systems. In Smart Innovation, Systems and Technologies; Springer: Singapore, 2021; pp. 185–198. [Google Scholar]
- Thayananthan, V. Advanced Security Issues of IoT based 5G Plus Wireless Communication for Industry 4.0. ISBN 978-1-53615-538-9. Available online: https://novapublishers.com/shop/advanced-security-issues-of-iot-based-5g-plus-wireless-communication-for-industry-4-0/ (accessed on 15 January 2023).
- Shaikh, R.A.; Thayananthan, V. Trust Evaluation Wireless Network for Routing Data Packets. U.S. Patent 10225708B2, 5 March 2019. Available online: https://patents.google.com/patent/US10225708B2 (accessed on 20 January 2023).
- Algarni, A.; Thayananthan, V. Improvement of 5G transportation services with SDN-based security solutions and beyond 5G. Electronics 2021, 10, 2490. [Google Scholar] [CrossRef]
- Shaikh, R.A.; Thayananthan, V. Risk-based decision methods for vehicular networks. Electronics 2019, 8, 627. [Google Scholar] [CrossRef]
- Thayananthan, V.; Yazdani, J. Secure Cyber-Physical Systems for improving transportation facilities in Smart cities and industry 4.0. In Secure Cyber-Physical Systems for Smart Cities; Advances in Computer and Electrical Engineering; IGI Global: Hershey, PA, USA, 2019; pp. 1–26. [Google Scholar]
- Kukkala, V.K.; Thiruloga, S.V.; Pasricha, S. Roadmap for Cybersecurity in Autonomous Vehicles. IEEE Consum. Electron. Mag. 2022, 11, 13–23. [Google Scholar] [CrossRef]
- He, H.; Gray, J.; Cangelosi, A.; Meng, Q.; McGinnity, T.; Mehnen, J. The challenges and opportunities of artificial intelligence in implementing trustworthy robotics and autonomous systems. In Proceedings of the 3rd International Conference on Intelligent Robotic and Control Engineering, Oxford, UK, 10–12 August 2020. [Google Scholar]
- Panda, S.; Rass, S.; Moschoyiannis, S.; Liang, K.; Loukas, G.; Panaousis, E. HoneyCar: A Framework to Configure Honeypot Vulnerabilities on the Internet of Vehicles. arXiv 2021, arXiv:2111.02364. [Google Scholar] [CrossRef]
- Basnet, M.; Ali, M. A Deep Learning Perspective on Connected Automated Vehicle (CAV) Cybersecurity and Threat Intelligence. arXiv 2021, arXiv:2109.10763. [Google Scholar]
- Ali, E.S.; Hasan, M.K.; Hassan, R.; Saeed, R.A.; Hassan, M.B.; Islam, S.; Nafi, N.S.; Bevinakoppa, S. Machine learning technologies for secure vehicular communication in internet of vehicles: Recent advances and applications. Secur. Commun. Netw. 2021, 2021, 8868355. [Google Scholar]
- Liu, W.; Xu, X.; Qi, L.; Zhang, X.; Dou, W. GoDeep: Intelligent IoV Service Deployment and Execution with Privacy Preservation in Cloud-edge Computing. In Proceedings of the 2021 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA, 5–10 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 579–587. [Google Scholar]
- Mohseni, S.; Pitale, M.; Singh, V.; Wang, Z. Practical solutions for machine learning safety in autonomous vehicles. arXiv 2019, arXiv:1912.09630. [Google Scholar]
- Ashraf, J.; Bakhshi, A.D.; Moustafa, N.; Khurshid, H.; Javed, A.; Beheshti, A. Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events from Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4507–4518. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Alkahtani, H. Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors 2022, 22, 360. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H.H. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices. Sensors 2022, 22, 2268. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, H.; Aldhyani, T.H.H. Developing Cybersecurity Systems Based on Machine Learning and Deep Learning Algorithms for Protecting Food Security Systems: Industrial Control Systems. Electronics 2022, 11, 1717. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Z.; Peng, Y.; Zhang, L. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of In-Vehicle Network Using LSTM. IEEE Trans. Veh. Technol. 2019, 68, 4275–4284. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, Z.; Tehranipoor, M. Identify a Spoofing Attack on an In-Vehicle CAN Bus Based on the Deep Features of an ECU Fingerprint Signal. Smart Cities 2020, 3, 2. [Google Scholar] [CrossRef]
- Avatefipour, O.; Al-Sumaiti, A.S.; El-Sherbeeny, A.M.; Awwad, E.M.; Elmeligy, M.A.; Mohamed, M.A.; Malik, H. An Intelligent Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning. IEEE Access 2019, 7, 127580–127592. [Google Scholar] [CrossRef]
Attacks | #Message | Normal Messages | Injected Messages |
---|---|---|---|
#Flooding_attack | 3,665,771 | 3,078,250 | 587,521 |
#Fuzzing_attack | 4,443,142 | 3,845,890 | 597,252 |
#Normal | 4,621,702 | 3,966,805 | 654,897 |
#Spoofing (gear)_attack | 3,838,860 | 3,347,013 | 491,847 |
Attack | Description |
---|---|
Flooding Attack on the CAN | Delivery of a large number of messages simultaneously from the CAN to the various ECU nodes. Attacks were injected at a rate of one every 0.3 milliseconds. |
Spoofing (gear) Attack on the CAN | The network assault known as a spoofing attack occurs when cybercriminals recognise and detect a data transmission, after which they either delay or replay the transmission. The cyberattacker either causes the data transfer to be delayed or causes it to be repeated. |
Spoofing Attack (RPM/gear) on the CAN | Spoofing is an attack that occurs when a person impersonates a trusted contact or brand, pretending to be someone who is trusted in order to acquire sensitive personal information. This can be used in order to gain access to sensitive personal information. |
Fuzzy Attack on the CAN | For the purpose of performing a fuzzy attack on Internet Explorer, for example, a hacker may run Microsoft’s browser inside a debugger tool, allowing them to monitor each command that the application really performs in the memory of the machine. |
Feature | |
---|---|
Timestamp | time (s) Stamp |
Time of the CAN | CAN message (HEX (ex. 043f)) |
Data length code (DLD) of the CAN | Bytes of data, from 0 to 8 |
DATA of the CAN [0~7] | Values of data (bytes) |
Car-Hacking Dataset | |||
Attacks | Precision % | Recall % | F1-score % |
#Flooding_attack | 100 | 100 | 100 |
#Fuzzing_attack | 99 | 90 | 94 |
#Normal | 99 | 100 | 99 |
#Spoofing (gear)_attack | 81 | 43 | 56 |
#Spoofing Attack (RPM)_attack | 100 | 100 | 100 |
Accuracy 98.80 | |||
Weighted average | 99 | 99 | 99 |
UNSW Dataset | |||
Attack | Precision % | Recall % | F1-score % |
#Analysis_attack | 100 | 100 | 100 |
#Backdoor_attack | 0.00 | 0.00 | 0.00 |
#DoS_attack | 100 | 100 | 100 |
#Exploits_attack | 100 | 100 | 100 |
#Fuzzers_attack | 48 | 52 | 50 |
#Generic_attack | 99 | 99 | 99 |
#Normal_attack | 100 | 100 | 100 |
#Reconnaissance_attack | 55 | 54 | 55 |
#Worms_attacks | 0.00 | 0.00 | 0.00 |
Accuracy 97.37 | |||
Weighted average | 97 | 97 | 97 |
Car-Hacking Dataset | |||
Attack | Precision % | Recall % | F1-Score % |
#Flooding_attack | 100 | 100 | 100 |
#Fuzzing_attack | 98 | 94 | 95 |
#Normal | 99 | 100 | 99 |
#Spoofing (gear)_attack | 72 | 48 | 58 |
#Spoofing Attack (RPM)_attack | 100 | 100 | 100 |
Accuracy 99 | |||
Weighted average | 99 | 99 | 99 |
UNSW-NB15 Dataset | |||
Attack | Precision % | Recall % | F1-score % |
#Analysis_attack | 100 | 100 | 100 |
#Backdoor_attack | 0.08 | 0.06 | 0.07 |
#DoS_attack | 100 | 100 | 100 |
#Exploits_attack | 100 | 100 | 100 |
#Fuzzers_attack | 50 | 39 | 44 |
#Generic_attack | 98 | 99 | 99 |
#Normal_attack | 100 | 100 | 100 |
#Reconnaissance_attack | 54 | 56 | 55 |
#Worms_attacks | 0.05 | 0.07 | 0.06 |
Accuracy 97.19 | |||
#Weighted average | 97 | 97 | 97 |
Car-Hacking Dataset | ||||
Model | Accuracy | Precision % | Recall % | F1-score % |
LSTM | 96.03 | 96.18 | 96.17 | 96.82 |
Autoencoder | 99.98 | 99.96 | 99.85 | 99.96 |
UNSW-NB15 Dataset | ||||
Model | Accuracy | Precision % | Recall % | F1-score % |
LSTM | 97.82 | 97.26 | 98.69 | 97.97 |
Autoencoder | 98.09 | 98.12 | 98.04 | 98.08 |
Car-Hacking Dataset | |||
Model | MSE | RMSE | R2 % |
KNN | 0.01200 | 0.01210 | 94.61 |
Decision tree | 0.01178 | 0.01190 | 94.70 |
LSTM | 0.0279 | 0.0136 | 92 |
Autoencoder | 0.0065 | 0.0106 | 95 |
UNSW-NB15 Dataset | |||
Model | MSE | RMSE | R2 % |
KNN | 0.086 | 0.1737 | 86.95 |
Decision tree | 0.1905 | 0.396 | 86.17 |
LSTM | 0.0059 | 0.076 | 80.87 |
Autoencoder | 0.0052 | 0.069 | 92 |
References | Car-Hacking Dataset (Accuracy) | UNSW-NB15 Dataset (Accuarcy) |
---|---|---|
KNN | 98.82 | 97 |
Decision tree | 99 | 97.19 |
LSTM | 96.03 | 97.82 |
Autoencoder | 99.98 | 98.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaade, F.W.; Al-Adhaileh, M.H. Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors 2023, 23, 4086. https://doi.org/10.3390/s23084086
Alsaade FW, Al-Adhaileh MH. Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors. 2023; 23(8):4086. https://doi.org/10.3390/s23084086
Chicago/Turabian StyleAlsaade, Fawaz Waselallah, and Mosleh Hmoud Al-Adhaileh. 2023. "Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms" Sensors 23, no. 8: 4086. https://doi.org/10.3390/s23084086
APA StyleAlsaade, F. W., & Al-Adhaileh, M. H. (2023). Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors, 23(8), 4086. https://doi.org/10.3390/s23084086