Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance
Abstract
:1. Introduction
2. Drowsiness Detection Based on Physiological Signals
3. Background Concepts
3.1. Skin Conductance
3.2. Motion Artifacts and Correction Approaches
4. System and Methods
4.1. Driving Simulator and Acquisition Devices
4.2. Artifacts Removal
4.3. Features Selection and Extraction
4.4. Machine Learning Algorithms
5. Filter Design Improvement
6. Experiments and Analysis of Results
6.1. Drowsiness Classification: Comparison between Procomp and E4 SC Signals
6.2. Drowsiness Classification by Oversampled E4 SC Signals
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety. 2018. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 17 February 2023).
- U.S. National Highway Traffic Safety Administration—Data Reporting and Information Division. Overview of Motor Vehicle Crashes in 2020. 2022. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813266 (accessed on 17 February 2023).
- European Commission—Mobility and Transport. 2021 Road Safety Statistics: What Is behind the Figures? 2021. Available online: https://transport.ec.europa.eu/2021-road-safety-statistics-what-behind-figures_en (accessed on 17 February 2023).
- European Commission, Directorate General for Transport—Road Safety Observatory. Road Safety Thematic Report—Fatigue. 2021. Available online: https://transport.ec.europa.eu (accessed on 17 February 2023).
- Moradi, A.; Nazari, S.S.H.; Rahmani, K. Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies. Transp. Res. Part Traffic Psychol. Behav. 2019, 65, 620–629. [Google Scholar] [CrossRef]
- Cina, M.; Rad, A.B. Categorized review of drive simulators and driver behavior analysis focusing on ACT-R architecture in autonomous vehicles. Sustain. Energy Technol. Assess. 2023, 56, 103044. [Google Scholar] [CrossRef]
- Arefnezhad, S.; Samiee, S.; Eichberger, A.; Frühwirth, M.; Kaufmann, C.; Klotz, E. Applying deep neural networks for multi-level classification of driver drowsiness using Vehicle-based measures. Expert Syst. Appl. 2020, 162, 113778. [Google Scholar] [CrossRef]
- Ford Media Center—New Ford Lab Integrates Wearables and Vehicles; Ford Looks at Linking Health Data to Driver-Assist Technology. Available online: https://media.ford.com/content/fordmedia/fna/us/en/news/2016/01/11/new-ford-lab-integrates-wearables-and-vehicles.html (accessed on 17 February 2023).
- Volkswagen—Driver Alert System Volkswagen: Senses When Uou Start to Feel Tired and Need a Break. Available online: https://www.volkswagen.co.uk/en/technology/car-safety/driver-alert-system.html (accessed on 17 February 2023).
- Doudou, M.; Bouabdallah, A.; Berge-Cherfaoui, V. Driver drowsiness measurement technologies: Current research, market solutions, and challenges. Int. J. Intell. Transp. Syst. Res. 2019, 18, 297–319. [Google Scholar] [CrossRef]
- Toyota—Lexus Safety System+. Available online: https://www.lexus.com/models/GX/safety/pre-collision-system?link[model_overlay_safety][SHOW_PAGE]=true (accessed on 17 February 2023).
- Pandey, N.N.; Muppalaneni, N.B. Dumodds: Dual modeling approach for drowsiness detection based on spatial and spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 119, 105759. [Google Scholar] [CrossRef]
- Amidei, A.; Poli, A.; Iadarola, G.; Tramarin, F.; Pavan, P.; Spinsante, S.; Rovati, L. Driver Drowsiness Detection based on Variation of Skin Conductance from Wearable Device. In Proceedings of the 2022 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Modena, Italy, 4–6 July 2022; pp. 94–98. [Google Scholar]
- Righetto. ProComp5 Infiniti—5 Channel System. 2023. Available online: https://bio-medical.com/procomp5-infiniti-5-channel-system.html (accessed on 16 February 2023).
- Albadawi, Y.; Takruri, M.; Awad, M. A Review of Recent Developments in Driver Drowsiness Detection Systems. Sensors 2022, 22, 2069. [Google Scholar] [CrossRef]
- Khan, M.Q.; Lee, S. A Comprehensive Survey of Driving Monitoring and Assistance Systems. Sensors 2019, 19, 2574. [Google Scholar] [CrossRef] [Green Version]
- STEER: Wearable Device That Will Not Let You Fall Asleep. Available online: https://www.kickstarter.com/projects/creativemode/steer-you-will-never-fall-asleep-while-driving?lang=en. (accessed on 17 February 2023).
- Empatica Inc., MI, IT. E4 WristBand from Empatica User’s Manual. v2-2021. Available online: https://www.empatica.com/en-eu/manuals/ (accessed on 10 January 2023).
- StopSleep: Anti-Sleep Alarm. Available online: https://www.stopsleep.co.uk/. (accessed on 17 February 2023).
- Amidei, A.; Fallica, P.G.; Conoci, S.; Pavan, P. Validating Photoplethysmography (PPG) data for driver drowsiness detection. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Virtual, 1–2 July 2021; pp. 147–151. [Google Scholar]
- Awais, M.; Badruddin, N.; Drieberg, M. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability. Sensors 2017, 17, 1997. [Google Scholar] [CrossRef] [Green Version]
- Daponte, P.; De Vito, L.; Iadarola, G.; Picariello, F.; Rapuano, S. Deterministic Compressed Sensing of heart sound signals. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Neuchatel, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar]
- Sunagawa, M.; Shikii, S.i.; Nakai, W.; Mochizuki, M.; Kusukame, K.; Kitajima, H. Comprehensive Drowsiness Level Detection Model Combining Multimodal Information. IEEE Sens. J. 2020, 20, 3709–3717. [Google Scholar] [CrossRef]
- Ye, C.; Li, W.; Li, Z.; Maguluri, G.; Grimble, J.; Bonatt, J.; Miske, J.; Iftimia, N.; Lin, S.; Grimm, M. Smart Steering Sleeve (S3): A Non-Intrusive and Integrative Sensing Platform for Driver Physiological Monitoring. Sensors 2022, 22, 7296. [Google Scholar] [CrossRef]
- Iadarola, G.; Poli, A.; Spinsante, S. Compressed Sensing of Skin Conductance Level for IoT-based wearable sensors. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022; pp. 1–6. [Google Scholar]
- Iadarola, G.; Poli, A.; Spinsante, S. Reconstruction of Galvanic Skin Response Peaks via Sparse Representation. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, Scotland, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Luca, M.; Evelyn, G.; Nicola, C.; Elisabetta, P.; Mariaelena, T.; Michela, S. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology 2019, 56, e13441. [Google Scholar]
- Arjunan, S.P.; Joseph, A.V. Wearable Sensor System to Monitor the Status of the Automobile Drivers. In Wearable/Personal Monitoring Devices Present to Future; Springer: Berlin/Heidelberg, Germany, 2022; pp. 101–107. [Google Scholar]
- Malathi, D.; Jayaseeli, J.D.D.; Madhuri, S.; Senthilkumar, K. Electrodermal Activity Based Wearable Device for Drowsy Drivers. J. Physics: Conf. Ser. 2018, 1000, 012048. [Google Scholar] [CrossRef]
- Aeimpreeda, N.; Sukaimod, P.; Khongsabai, P.; Thothong, C.; Sueaseenak, D. Study of drowsiness from simple physiological signals testing: A signal processing perspective. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 738–741. [Google Scholar]
- Sánchez-Reolid, R.; López de la Rosa, F.; Sánchez-Reolid, D.; López, M.T.; Fernández-Caballero, A. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review. Sensors 2022, 22, 8886. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Peng, S.; Ting, W.; Zhu, X. Fatigue detection of vehicular driver through skin conductance, pulse oximetry and respiration: A random forest classifier. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 1162–1166. [Google Scholar]
- Poli, A.; Amidei, A.; Benatti, S.; Iadarola, G.; Tramarin, F.; Rovati, L.; Pavan, P.; Spinsante, S. Exploiting Blood Volume Pulse and Skin Conductance for Driver Drowsiness Detection. In Proceedings of the 2022 9th EAI International Conference on IoT Technologies for HealthCare, Braga, Portugal, 16–19 November 2022. [Google Scholar]
- Bajaj, J.S.; Kumar, N.; Kaushal, R.K.; Gururaj, H.L.; Flammini, F.; Natarajan, R. System and Method for Driver Drowsiness Detection Using Behavioral and Sensor-Based Physiological Measures. Sensors 2023, 23, 1292. [Google Scholar] [CrossRef]
- Horng, G.J.; Lin, J.Y. Using Multimodal Bio-Signals for Prediction of Physiological Cognitive State Under Free-Living Conditions. IEEE Sens. J. 2020, 20, 4469–4484. [Google Scholar] [CrossRef]
- Choi, M.; Koo, G.; Seo, M.; Kim, S.W. Wearable Device-Based System to Monitor a Driver’s Stress, Fatigue, and Drowsiness. IEEE Trans. Instrum. Meas. 2018, 67, 634–645. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Williamson, J.R.; Heaton, K.J.; Lammert, A.; Finkelstein, K.; Sturim, D.; Smalt, C.; Ciccarelli, G.; Quatieri, T.F. Audio, Visual, and Electrodermal Arousal Signals as Predictors of Mental Fatigue Following Sustained Cognitive Work. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 832–836. [Google Scholar]
- Li, P.; Li, Y.; Yao, Y.; Wu, C.; Nie, B.; Li, S.E. Sensitivity of Electrodermal Activity Features for Driver Arousal Measurement in Cognitive Load: The Application in Automated Driving Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14954–14967. [Google Scholar] [CrossRef]
- Taylor, S.; Jaques, N.; Chen, W.; Fedor, S.; Sano, A.; Picard, R. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1934–1937. [Google Scholar]
- Kocielnik, R.; Sidorova, N.; Maggi, F.M.; Ouwerkerk, M.; Westerink, J.H.D.M. Smart technologies for long-term stress monitoring at work. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Lubbock, TX, USA, 12–14 June 2013; pp. 53–58. [Google Scholar]
- Storm, H.; Fremming, A.; Ødegaard, S.; Martinsen, Ø.G.; Mørkrid, L. The development of a software program for analyzing spontaneous and externally elicited skin conductance changes in infants and adults. Clin. Neurophysiol. 2000, 111, 1889–1898. [Google Scholar] [CrossRef]
- Kelsey, M.; Akcakaya, M.; Kleckner, I.R.; Palumbo, R.V.; Barrett, L.F.; Quigley, K.S.; Goodwin, D.M.S. Applications of sparse recovery and dictionary learning to enhance analysis of ambulatory electrodermal activity data. Biomed. Signal Process. Control. 2018, 40, 58–70. [Google Scholar] [CrossRef]
- Hernandez, J.; Morris, R.R.; Picard, R.W. Call Center Stress Recognition with Person-Specific Models. In Proceedings of the ACII’11: 4th International Conference on Affective Computing and Intelligent Interaction—Volume Part I, Memphis, TN, USA, 9–12 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–134. [Google Scholar]
- Kleckner, I.R.; Jones, R.M.; Wilder-Smith, O.; Wormwood, J.B.; Akcakaya, M.; Quigley, K.S.; Lord, C.; Goodwin, M.S. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. IEEE Trans. Biomed. Eng. 2018, 65, 1460–1467. [Google Scholar] [CrossRef]
- Subramanian, T.S.; Barbieri, B.; Brown, R.; Emery, N. An unsupervised automated paradigm for artifact removal from electrodermal activity in an uncontrolled clinical setting. Physiol. Meas. 2022, 43, 115005. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Android Studio Features|Android Developers. Available online: https://developer.android.com/studio/features (accessed on 30 January 2023).
- Shukla, J.; Barreda-Ángeles, M.; Oliver, J.; Puig, D. Efficient wavelet-based artifact removal for electrodermal activity in real-world applications. Biomed. Signal Process. Control. 2018, 42, 45–52. [Google Scholar] [CrossRef]
- Chen, W.; Jaques, N.; Taylor, S.; Sano, A.; Fedor, S.; Picard, R.W. Wavelet-based motion artifact removal for electrodermal activity. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Sydney, Australia, 24–28 July 2015; pp. 6223–6226. [Google Scholar]
- Gwak, J.; Shino, M.; Hirao, A. Early Detection of Driver Drowsiness Utilizing Machine Learning based on Physiological Signals, Behavioral Measures, and Driving Performance. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1794–1800. [Google Scholar]
- Iadarola, G.; Poli, A.; Spinsante, S. Analysis of Galvanic Skin Response to Acoustic Stimuli by Wearable Devices. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Neuchatel, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar]
- Islam, A.; Ma, J.; Gedeon, T.; Hossain, M.Z.; Liu, Y.H. Measuring User Responses to Driving Simulators: A Galvanic Skin Response Based Study. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 9–11 December 2019; pp. 33–337. [Google Scholar]
- Can, Y.S.; Gokay, D.; Kılıç, D.R.; Ekiz, D.; Chalabianloo, N.; Ersoy, C. How Laboratory Experiments Can Be Exploited for Monitoring Stress in the Wild: A Bridge Between Laboratory and Daily Life. Sensors 2020, 20, 838. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 856–863. [Google Scholar]
- Mehta, S.; Mishra, P.; Bhatt, A.J.; Agarwal, P. AD3S: Advanced Driver Drowsiness Detection System using Machine Learning. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November 2019; pp. 108–113. [Google Scholar]
- Poli, A.; Cosoli, G.; Scalise, L.; Spinsante, S. Impact of Wearable Measurement Properties and Data Quality on ADLs Classification Accuracy. IEEE Sens. J. 2021, 21, 14221–14231. [Google Scholar] [CrossRef]
- Hsieh, H.F.; Hsu, H.T.; Lin, P.C.; Yang, Y.J.; Huang, Y.T.; Ko, C.H.; Wang, H.H. The Effect of Age, Gender, and Job on Skin Conductance Response among Smartphone Users Who are Prohibited from Using Their Smartphone. Int. J. Environ. Res. Public Health 2020, 17, 2313. [Google Scholar] [CrossRef] [Green Version]
- van Dooren, M.; de Vries, J.G.J.; Janssen, J.H. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiol. Behav. 2012, 106, 298–304. [Google Scholar] [CrossRef]
Type of Signal | Domain | Features |
---|---|---|
SC signal | Time | standard deviation (S) minimum (S) kurtosis (S), skewness (S) variance ((S)), range (S) |
Frequency | mean (S/Hz), standard deviation (S/Hz) minimum (S/Hz), maximum (S/Hz) kurtosis (S/Hz), skewness (S/Hz) variance ((S/Hz)), range (S/Hz) median (S/Hz) | |
SC components | Time | SCR number of peaks SCL standard deviation (S) SCL minimum (S) |
Procomp Infinity | E4 | ||
---|---|---|---|
Random Forest | Accuracy Precision Recall | 91.3% 91.3% 91.3% | 83.3% 83.2% 83.3% |
Boosting | Accuracy Precision Recall | 91.7% 91.2% 91.2% | 83.2% 83.1% 83.2% |
Bagging | Accuracy Precision Recall | 90.2% 90.2% 90.2% | 82.8% 82.7% 82.8% |
Features | SC acquired on finger Higher sampling frequency Invasive Not portable | SC acquired on the wrist Lower sampling frequency Non-invasive Portable |
E4 with Oversampling at 256 Hz | E4 with Original Signals at 4 Hz | ||
---|---|---|---|
Random Forest | Accuracy Precision Recall | 89.3% 89.4% 89.3% | 84.1% 84.2% 84.1% |
Boosting | Accuracy Precision Recall | 89.4% 89.5% 89.5% | 82.8% 82.8% 82.8% |
Bagging | Accuracy Precision Recall | 88.4% 88.4% 88.4% | 83.2% 83.3% 83.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amidei, A.; Spinsante, S.; Iadarola, G.; Benatti, S.; Tramarin, F.; Pavan, P.; Rovati, L. Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance. Sensors 2023, 23, 4004. https://doi.org/10.3390/s23084004
Amidei A, Spinsante S, Iadarola G, Benatti S, Tramarin F, Pavan P, Rovati L. Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance. Sensors. 2023; 23(8):4004. https://doi.org/10.3390/s23084004
Chicago/Turabian StyleAmidei, Andrea, Susanna Spinsante, Grazia Iadarola, Simone Benatti, Federico Tramarin, Paolo Pavan, and Luigi Rovati. 2023. "Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance" Sensors 23, no. 8: 4004. https://doi.org/10.3390/s23084004