Optical Frequency Domain Reflectometry Based on Multilayer Perceptron
Abstract
:1. Introduction
2. Theory
3. Experiment Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eickhoff, W.; Ulrich, R. Optical frequency-domain reflectometry in single-mode fiber. Appl. Phys. Lett. 1981, 39, 693–695. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Bao, X.Y. Distributed temperature profile in hydrogen flame measured by telecom fiber and its durability under flame by OFDR. Opt. Express 2022, 30, 19390–19401. [Google Scholar] [CrossRef]
- Zhong, H.J.; Fu, C.L.; Wang, L.J.; Du, B.; Li, P.F.; Meng, Y.J.; Chen, L.; Du, C.; Wang, Y.P. High-spatial-resolution OFDR with single interferometer using self-compensation method. Opt. Lasers Eng. 2023, 161, 107341. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, X.; Lu, J.; Yi, D.; Tong, Z.; Wang, L.; Duan, T.; Li, X.; Hong, X.; Wang, J. Femtosecond laser written ultra-weak Fabry-Perot array for distributed absolute temperature profile sensing with high spatial resolution. Opt. Express 2022, 30, 47038–47047. [Google Scholar] [CrossRef]
- Liang, C.S.; Bai, Q.; Yan, M.; Wang, Y.; Zhang, H.J.; Jin, B.Q. A comprehensive study of optical frequency domain reflectometry. IEEE Access 2021, 9, 41647–41668. [Google Scholar] [CrossRef]
- Qu, S.; Qin, Z.G.; Xu, Y.P.; Cong, Z.H.; Wang, Z.Q.; Liu, Z.J. Improvement of strain measurement range via image processing methods in OFDR system. J. Light. Technol. 2021, 39, 6340–6347. [Google Scholar] [CrossRef]
- Li, S.; Hua, P.D.; Ding, Z.Y.; Liu, K.; Yang, Y.; Zhao, J.P.; Pan, M.; Guo, H.H.; Zhang, T.; Liu, L.; et al. Reconstruction error model of distributed shape sensing based on the reentered frame in OFDR. Opt. Express 2022, 30, 43255–43270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.R.; Zhao, K.H.; Badar, M.; Yi, X.R.; Lu, P.; Buric, M.; Mao, Z.H.; Chen, K.P. Improving OFDR distributed fiber sensing by fibers with enhanced rayleigh backscattering and image processing. IEEE Sens. J. 2022, 22, 18471–18478. [Google Scholar] [CrossRef]
- Travers, P.; Arpison, G.; Ghorbel, I.; Leguillon, Y.; Louf, F.; Boucard, P.A.; Kemlin, V.; Crozatier, V. Distributed strain sensing inside a fiber coil under vibration. J. Light. Technol. 2022, 40, 6280–6287. [Google Scholar] [CrossRef]
- Shao, C.; Yin, G.L.; Lv, L.; Liu, M.; Ikechukwu, I.P.; Han, H.N.; Zhou, L.; Zhang, J.D.; Zhai, W.J.; Wang, S.; et al. OFDR with local spectrum matching method for optical fiber shape sensing. Appl. Phys. Express 2019, 12, 4. [Google Scholar] [CrossRef]
- Francoeur, J.; Roberge, A.; Lorre, P.; Monet, F.; Wright, C.; Kadoury, S.; Kashyap, R. Optical frequency domain reflectometry shape sensing using an extruded optical fiber triplet for intra-arterial guidance. Opt. Express 2023, 31, 396–410. [Google Scholar] [CrossRef]
- Meng, Y.J.; Fu, C.L.; Du, C.; Chen, L.; Zhong, H.J.; Li, P.F.; Xu, B.J.; Du, B.; He, J.; Wang, Y.P. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer. J. Light. Technol. 2021, 39, 6624–6630. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.H.; Ding, Z.Y.; Zhu, D.F.; Guo, H.H.; Pan, M.; Yu, Y.; Liu, K.; Jiang, J.F.; Liu, T.G. Demonstration of large curvature radius shape sensing using optical frequency domain reflectometry in multi-core fibers. IEEE Photonics J. 2021, 13, 6800809. [Google Scholar] [CrossRef]
- Beisenova, A.; Issatayeva, A.; Iordachita, I.; Blanc, W.; Molardi, C.; Tosi, D. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing. Opt. Express 2019, 27, 22074–22087. [Google Scholar] [CrossRef] [PubMed]
- Katrenova, Z.; Alisherov, S.; Abdol, T.; Yergibay, M.; Kappassov, Z.; Tosi, D.; Molardi, C. Investigation of high-resolution distributed fiber sensing system embedded in flexible silicone carpet for 2D pressure mapping. Sensors 2022, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wan, Y.Y.; Tang, M.; Chen, Y.J.; Zhao, C.; Liao, R.L.; Chang, Y.Q.; Fu, S.N.; Shum, P.P.; Liu, D.M. Real-time denoising of brillouin optical time domain analyzer with high data fidelity using convolutional neural networks. J. Light. Technol. 2019, 37, 2648–2653. [Google Scholar] [CrossRef]
- Wang, M.H.; Sui, Y.; Zhou, W.N.; An, X.; Dong, W. AIoT enabled resampling filter for temperature extraction of the Brillouin gain spectrum. Opt. Express 2022, 30, 36110–36121. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.Q.; Yin, J.H.; Borana, L.; Qin, J.Q.; Wu, P.C.; Yang, J.L. A network theory for BOTDA measurement of deformations of geotechnical structures and error analysis. Measurement 2019, 146, 618–627. [Google Scholar] [CrossRef]
- Wang, J.J.; Li, Y.Q.; Liao, J.H. Temperature extraction for Brillouin optical fiber sensing system based on extreme learning machine. Opt. Commun. 2019, 453, 5. [Google Scholar] [CrossRef]
- Almoosa, A.S.K.; Hamzah, A.E.; Zan, M.S.D.; Ibrahim, M.F.; Arsad, N.; Elgaud, M.M. Improving the Brillouin frequency shift measurement resolution in the Brillouin optical time domain reflectometry (BOTDR) fiber sensor by artificial neural network (ANN). Opt. Fiber Technol. 2022, 70, 102860. [Google Scholar] [CrossRef]
- Hou, G.Y.; Li, Z.X.; Wang, K.D.; Hu, J.X. Structural Deformation Sensing Based on Distributed Optical Fiber Monitoring Technology and Neural Network. KSCE J. Civ. Eng. 2021, 25, 4304–4313. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Tang, M.; Wang, L.; Guo, N.; Tam, H.Y.; Lu, C. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J. Light. Technol. 2018, 36, 5764–5772. [Google Scholar] [CrossRef]
- Shi, Y.; Dai, S.W.; Jiang, T.; Fan, Z. A recognition method for multi-radial-distance event of Phi-OTDR system based on CNN. IEEE Access 2021, 9, 143473–143480. [Google Scholar] [CrossRef]
- Wang, M.; Feng, H.; Qi, D.Z.; Du, L.P.; Sha, Z. φ-OTDR pattern recognition based on CNN-LSTM. Optik 2023, 272, 170380. [Google Scholar] [CrossRef]
- Liu, M.X.; Wang, X.; Liang, S.; Sheng, X.Z.; Lou, S.G. Single and composite disturbance event recognition based on the DBN-GRU network in φ-OTDR. Appl. Opt. 2023, 62, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.J.; Zeng, K.Y.; Wang, L.; Tang, M.; Liu, D.M. Integrated denoising and extraction of both temperature and strain based on a single CNN framework for a BOTDA sensing system. Opt. Express 2022, 30, 34453–34467. [Google Scholar] [CrossRef]
- Zheng, H.; Yan, Y.X.; Wang, Y.Y.; Shen, X.L.; Lu, C. Deep learning enhanced Long-range fast BOTDA for vibration measurement. J. Light. Technol. 2022, 40, 262–268. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Guo, N.; Li, M.H.; Yu, K.L.; Gao, K.Q. Back propagation neutral network based signal acquisition for Brillouin distributed optical fiber sensors. Opt. Express 2019, 27, 4549–4561. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Guo, N.; Shu, C.; Lu, C. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy. Opt. Express 2017, 25, 31210–31220. [Google Scholar] [CrossRef]
- Madaschi, A.; Morosi, J.; Brunero, M.; Boffi, P. Enhanced neural network implementation for yemperature profile extraction in distributed brillouin scattering-based sensors. IEEE Sens. J. 2022, 22, 6871–6878. [Google Scholar] [CrossRef]
- Hu, Y.T.; Shang, Q.F. Performance enhancement of BOTDA based on the image super-resolution reconstruction. IEEE Sens. J. 2022, 22, 3397–3404. [Google Scholar] [CrossRef]
- Chen, B.; Su, L.H.; Zhang, Z.Y.; Liu, X.Z.; Dai, T.G.; Song, M.P.; Yu, H.; Wang, Y.H.; Yang, J.Y. Wavelet convolutional neural network for robust and fast temperature measurements in Brillouin optical time domain reflectometry. Opt. Express 2022, 30, 13942–13958. [Google Scholar] [CrossRef]
- Wu, H.J.; Yang, M.R.; Yang, S.Q.; Lu, H.; Wang, C.Q.; Rao, Y.J. A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access 2020, 8, 119448–119457. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, K.; Jiang, J.F.; Xu, T.H.; Ding, Z.Y.; Sun, Z.S.; Huang, Y.L.; Xue, K.; Jin, X.B.; Liu, T.G. An ameliorated denoising scheme based on deep learning for phi-OTDR system with 41-km detection range. IEEE Sens. J. 2022, 22, 19666–19674. [Google Scholar] [CrossRef]
- Tian, M.L.; Dong, H.; Cao, X.M.; Yu, K.L. Temporal convolution network with a dual attention mechanism for phi-OTDR event classification. Appl. Opt. 2022, 61, 5951–5956. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dai, S.W.; Liu, X.Y.; Zhang, Y.C.; Wu, X.J.; Jiang, T. Event recognition method based on dual-augmentation for an Phi-OTDR system with a few training samples. Opt. Express 2022, 30, 31232–31243. [Google Scholar] [CrossRef]
- Shao, Y.H.; Liu, J.N.; Yang, J.L.; Wu, Z.B. Spatial-spectral involution MLP network for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 9293–9310. [Google Scholar] [CrossRef]
- Fang, Z.; Xiong, B.Y.; Liu, F. Sparse point-voxel aggregation network for efficient point cloud semantic segmentation. IET Comput. Vis. 2022, 16, 644–654. [Google Scholar] [CrossRef]
- Al-Thalabi, S.H.Z.; Heydari, A.A.; Tavakoli, M. Modeling and prediction using an artificial neural network to study the impact of foreign direct investment on the growth rate / a case study of the State of Qatar. J. Stat. Manag. Syst. 2022, 25, 1991–2003. [Google Scholar] [CrossRef]
- Veronese, R.; Galtarossa, A.; Palmieri, L. Distributed characterization of few-mode fibers based on optical frequency domain reflectometry. J. Light. Technol. 2020, 38, 4843–4849. [Google Scholar] [CrossRef]
Algorithm | Running Time (s) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
CCA | 19.1259 | 18.8495 | 18.6920 | 18.5678 |
MLP | 0.4371 | 0.4639 | 0.4374 | 0.4456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, G.; Zhu, Z.; Liu, M.; Wang, Y.; Liu, K.; Yu, K.; Zhu, T. Optical Frequency Domain Reflectometry Based on Multilayer Perceptron. Sensors 2023, 23, 3165. https://doi.org/10.3390/s23063165
Yin G, Zhu Z, Liu M, Wang Y, Liu K, Yu K, Zhu T. Optical Frequency Domain Reflectometry Based on Multilayer Perceptron. Sensors. 2023; 23(6):3165. https://doi.org/10.3390/s23063165
Chicago/Turabian StyleYin, Guolu, Zhaohao Zhu, Min Liu, Yu Wang, Kaijun Liu, Kuanglu Yu, and Tao Zhu. 2023. "Optical Frequency Domain Reflectometry Based on Multilayer Perceptron" Sensors 23, no. 6: 3165. https://doi.org/10.3390/s23063165
APA StyleYin, G., Zhu, Z., Liu, M., Wang, Y., Liu, K., Yu, K., & Zhu, T. (2023). Optical Frequency Domain Reflectometry Based on Multilayer Perceptron. Sensors, 23(6), 3165. https://doi.org/10.3390/s23063165