Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems
Abstract
1. Introduction
2. Theory
3. Solution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Lu, M.; Yin, W.; Bennecer, A.; Kirk, K.J. Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor. Sensors 2021, 21, 419. [Google Scholar] [CrossRef]
- Ha, N.; Lee, H.-S.; Lee, S. Development of a Wireless Corrosion Detection System for Steel-Framed Structures Using Pulsed Eddy Currents. Sensors 2021, 21, 8199. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, J.; Liu, L.; Qin, S.; Fu, Z. A Novel Pulsed Eddy Current Criterion for Non-Ferromagnetic Metal Thickness Quantifications under Large Liftoff. Sensors 2022, 22, 614. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Huang, R.; Chen, Z.; Yu, K.; Zhang, Z.; Salas-Avila, J.R.; Yin, W. Eddy Current Measurement for Planar Structures. Sensors 2022, 22, 8695. [Google Scholar] [CrossRef] [PubMed]
- Tytko, G. Eddy Current Testing of Conductive Coatings Using a Pot-Core Sensor. Sensors 2023, 23, 1042. [Google Scholar] [CrossRef]
- Dziczkowski, L. Elimination of coil liftoff from eddy current measurements of conductivity. IEEE Trans. Instrum. Meas. 2013, 62, 3301–3307. [Google Scholar] [CrossRef]
- Vasic, D.; Rep, I.; Spikic, D.; Kekelj, M. Model of Magnetically Shielded Ferrite-Cored Eddy Current Sensor. Sensors 2022, 22, 326. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Zhang, Z.; Zhao, Q.; Xie, Y.; Tao, Y.; Meng, T.; Peyton, A.; Theodoulidis, T.; Yin, W. Measurement of the radius of metallic plates based on a novel finite region eigenfunction expansion (FREE) method. IEEE Sens. J. 2020, 20, 15099–15106. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Peyton, A.; Yin, W. Thickness Measurement of Metallic Plates with Finite Planar Dimension Using Eddy Current Method. IEEE Trans. Instrum. Meas. 2020, 69, 8424–8431. [Google Scholar] [CrossRef]
- Tytko, G. Eddy current testing of small radius conductive cylinders with the employment of an I-core sensor. Measurement 2021, 186, 110219. [Google Scholar] [CrossRef]
- Tytko, G. Measurement of multilayered conductive discs using eddy current method. Measurement 2022, 204, 112053. [Google Scholar] [CrossRef]
- Vasic, D.; Bilas, V.; Ambrus, D. Compensation of Coil Radial Offset in Single-Coil Measurement of Metal Tube Properties. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, Poland, 1–3 May 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Theodoulidis, T.; Skarlatos, A. Efficient calculation of transient eddy current response from multi-layer cylindrical conductive media. Philos. Trans. R. Soc. A 2020, 378, 20190588. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, B.; Li, W.; Jing, H.; Chen, Z.; Li, D. Pulse-modulation eddy current probes for imaging of external corrosion in nonmagnetic pipes. NDT E Int. 2017, 88, 51–58. [Google Scholar] [CrossRef]
- Luloff, M.S. Concerning the exact solution for an internal transmit-receive eddy current probe at arbitrary locations and orientations within two non-concentric conductive tubes. NDT E Int. 2020, 116, 102298. [Google Scholar] [CrossRef]
- Guo, W.; Gao, B.; Tian, G.-Y.; Si, D. Physic perspective fusion of electromagnetic acoustic transducer and pulsed eddy current testing in non-destructive testing system. Philos. Trans. R. Soc. A 2020, 378, 20190608. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Bowler, J.R.; Theodoulidis, T.P. Eddy Currents Induced in a Finite Length Layered Rod by a Coaxial Coil. IEEE Trans. Magn. 2005, 41, 2455–2461. [Google Scholar] [CrossRef]
- Desjardins, D.P.R.; Krause, T.W.; Gauthier, N. Analytical modeling of the transient response of a coil encircling a ferromagnetic conducting rod in pulsed eddy current testing. NDT E Int. 2013, 60, 127–131. [Google Scholar] [CrossRef]
- Mohseni, E.; Boukani, H.H.; Franca, D.R.; Viens, M. A Study of the Automated Eddy Current Detection of Cracks in Steel Plates. J. Nondestr. Eval. 2020, 39, 6. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Luong, V.S.; Nguyen, K.D.; Lee, J. Electromagnetic Testing of Corrosion at Rivet Sites via Principal Component Analysis. J. Nondestr. Eval. 2021, 40, 36. [Google Scholar] [CrossRef]
- Skarlatos, A.; Theodoulidis, T. Solution to the eddy-current induction problem in a conducting half-space with a vertical cylindrical borehole. Proc. R. Soc. A 2012, 468, 1758–1777. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Ren, S.; Ren, Y.; Abidin, I.M.Z.; Chen, Z. Pulse-Modulation Eddy Current Evaluation of Interlaminar Corrosion in Stratified Conductors: Semi-Analytical Modeling and Experiments. Sensors 2022, 22, 3458. [Google Scholar] [CrossRef]
- Farag, H.E.; Toyserkani, E.; Khamesee, M.B. Non-Destructive Testing Using Eddy Current Sensors for Defect Detection in Additively Manufactured Titanium and Stainless-Steel Parts. Sensors 2022, 22, 5440. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, M.; Qiu, J.; Song, J. Efficient Model Assisted Probability of Detection Estimations in Eddy Current NDT with ACA-SVD Based Forward Solver. Sensors 2022, 22, 7625. [Google Scholar] [CrossRef] [PubMed]
- Theodoulidis, T.; Bowler, J.R. Eddy current coil interaction with a right-angled conductive wedge. Proc. R. Soc. A 2005, 461, 3123–3139. [Google Scholar] [CrossRef]
- Bowler, J.R.; Theodoulidis, T.P. Coil impedance variation due to induced current at the edge of a conductive plate. J. Phys. D Appl. Phys. 2006, 39, 2862–2868. [Google Scholar] [CrossRef]
- Paul, S.; Bird, J.Z. Improved analytic model for eddy current force considering edge-effect of a conductive plate. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 6 September 2016; pp. 789–795. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Luo, Y.; Zhu, R. Inductance calculations for coaxial iron-core coils shielded by cylindrical screens of high permeability. IET Electr. Power Appl. 2019, 13, 795–804. [Google Scholar] [CrossRef]
- Fan, S.; Yi, J.; Sun, H.; Yun, F. Quantifying Hole-Edge Crack of Bolt Joints by Using an Embedding Triangle Eddy Current Sensing Film. Sensors 2021, 21, 2567. [Google Scholar] [CrossRef]
- Aldrina, J.C.; Sabbagh, H.A.; Murphy, R.K.; Sabbagh, E.H. Recent advances in modeling discontinuities in anisotropic and heterogeneous materials in eddy current NDE. AIP Conf. Proc. 2012, 1335, 1565. [Google Scholar] [CrossRef]
- Grimberg, R.; Tian, G.-Y. High-frequency electromagnetic non-destructive evaluation for high spatial resolution, using metamaterials. Proc. R. Soc. A 2012, 468, 3080–3099. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, H.; Mandache, C.; Liu, Z. Pulsed Eddy Current Data Analysis for the Characterization of the Second-Layer Discontinuities. J. Nondestr. Eval. 2019, 38, 7. [Google Scholar] [CrossRef]
- Delves, L.M.; Lyness, J.N. A numerical method for locating the zeros of an analytic function. Math. Comput. 1967, 21, 543–560. [Google Scholar] [CrossRef]
- Davies, B. Locating the zeros of an analytic function. J. Comput. Phys. 1986, 66, 36–49. [Google Scholar] [CrossRef]
- Dellnitz, M.; Schutze, O.; Zheng, Q. Locating all the zeros of an analytic function in one complex variable. J. Comput. Appl. Math. 2002, 138, 325–333. [Google Scholar] [CrossRef]
- Kowalczyk, P. Complex Root Finding Algorithm Based on Delaunay Triangulation. ACM Trans. Math. Soft. 2015, 41, 1–13. [Google Scholar] [CrossRef]
- Vasic, D.; Ambru, D.; Bilas, V. Computation of the eigenvalues for bounded domain eddy-current models with coupled regions. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Kowalczyk, P. Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems. IEEE Trans. Anten. Propag. 2018, 66, 7198–7205. [Google Scholar] [CrossRef]
- Tytko, G.; Dawidowski, Ł. Locating complex eigenvalues for analytical eddy-current models used to detect flaws. COMPEL 2019, 38, 1800–1809. [Google Scholar] [CrossRef]
- Dziedziewicz, S.; Lech, R.; Kowalczyk, P. A Self-Adaptive Complex Root Tracing Algorithm for the Analysis of Propagation and Radiation Problem. IEEE Trans. Anten. Propag. 2021, 69, 5171–5174. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Electromagnetic forces in conductors. J. Appl. Phys. 1967, 38, 5045–5051. [Google Scholar] [CrossRef]
- Gockenbach, M.S. Partial Differential Equations: Analytical and Numerical Methods; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2011; pp. 396–400. [Google Scholar]
- Tytko, G. Fast Method of Calculating the Air-Cored Coil Impedance Using the Filamentary Coil Model. PIER M 2020, 91, 101–109. [Google Scholar] [CrossRef]
Tests | f [kHz] | μr | σ [MS/m] | c [mm] | Problem |
---|---|---|---|---|---|
1 | 1 | 1 | 60 | 4 | hole |
2 | 100 | 1 | 60 | 4 | hole |
3 | 10 | 50 | 60 | 4 | hole |
4 | 1 | 50 | 1 | 4 | hole |
5 | 10 | 10 | 30 | 8 | hole |
6 | 10 | 1 | 30 | 8 | hole |
7 | 10 | 1 | 60 | 15 | disk |
8 | 1 | 10 | 1 | 10 | disk |
9 | 200 | 1 | 30 | 15 | disk |
10 | 10 | 1 | 1 | 5 | disk |
Tests | Incorrect Eigenvalues | Time [s] | ||||||
---|---|---|---|---|---|---|---|---|
SLGF | MCCE | Newton | Fsolve | SLGF | MCCE | Newton | Fsolve | |
1 | 0 | 0 | 0 | 0 | 0.6 | 1.0 | 0.4 | 2.3 |
2 | 0 | 2 | 3 | 3 | 0.7 | 7.5 | 17.7 | 9.8 |
3 | 0 | 3 | 3 | 3 | 0.6 | 2.0 | 13.1 | 1.1 |
4 | 0 | 0 | 0 | 0 | 0.6 | 1.1 | 0.4 | 1.4 |
5 | 0 | 6 | 6 | 6 | 0.6 | 2.1 | 12.6 | 0.9 |
6 | 0 | 0 | 0 | 0 | 0.7 | 1 | 7.2 | 1.1 |
7 | 0 | 6 | 1 | 6 | 0.6 | 5.4 | 12.9 | 5.0 |
8 | 0 | 0 | 1 | 0 | 1.0 | 2.1 | 0.2 | 1.7 |
9 | 0 | 12 | 12 | 12 | 2.0 | 2.1 | 11.5 | 1.7 |
10 | 0 | 0 | 0 | 0 | 0.6 | 1.1 | 1.2 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoulidis, T.; Skarlatos, A.; Tytko, G. Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors 2023, 23, 3055. https://doi.org/10.3390/s23063055
Theodoulidis T, Skarlatos A, Tytko G. Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors. 2023; 23(6):3055. https://doi.org/10.3390/s23063055
Chicago/Turabian StyleTheodoulidis, Theodoros, Anastassios Skarlatos, and Grzegorz Tytko. 2023. "Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems" Sensors 23, no. 6: 3055. https://doi.org/10.3390/s23063055
APA StyleTheodoulidis, T., Skarlatos, A., & Tytko, G. (2023). Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors, 23(6), 3055. https://doi.org/10.3390/s23063055