Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots?
Abstract
:1. Introduction
- We propose a mobile robot path-planning algorithm with dynamic obstacle avoidance based on a combination of genetic algorithms and velocity obstacles.
- We demonstrate that by a judicious choice of data representation, parameters, and recombination algorithms, GAs can achieve a real-time decision speed in this setting.
- Through a set of extensive experiments we compare variants of the proposed approach with baselines, considering the running time and the executed path of the mobile robot.
Related Work
2. Problem Formulation
3. Background
4. Genetic Algorithm-Based Velocity Obstacle Method
4.1. Filtering Obstacles
4.2. Fitness Value
4.3. Recombination Method
4.4. Mutation
5. Experiments and Results
- GAVO-1D: uses the 1D recombination method with and mutation rate .
- GAVO-2D: uses a 2D recombination method with , and mutation rate .
- GAVO-POLAR: uses the polar recombination method with , and mutation rate .
- GAVO-MUT: mutation only—uses the mutation at a rate of 100% and does not perform recombination.
5.1. A sparse Environment
5.2. Crowded Environment
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VO | velocity obstacle shape |
position vector | |
velocity vector | |
length of the maximum velocity vector | |
r | length of velocity vector |
maximum time interval | |
minimum time at the filtering method when the agent and the obstacle are at the closest points to each other | |
maximum distance | |
minimum distance between the agent and the obstacle during their motion | |
speed component of the fitness function | |
safety component of the fitness function | |
angle of a vector | |
difference between the angle of the goal and the angle of the velocity vector | |
f | fitness function |
parameter in the fitness function which shows the impact of the safety | |
random parameter |
References
- Unger, H.; Markert, T.; Müller, E. Evaluation of use cases of autonomous mobile robots in factory environments. Procedia Manuf. 2018, 17, 254–261. [Google Scholar] [CrossRef]
- Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [Google Scholar] [CrossRef]
- Liaqat, A.; Hutabarat, W.; Tiwari, D.; Tinkler, L.; Harra, D.; Morgan, B.; Taylor, A.; Lu, T.; Tiwari, A. Autonomous mobile robots in manufacturing: Highway Code development, simulation, and testing. Int. J. Adv. Manuf. Technol. 2019, 104, 4617–4628. [Google Scholar] [CrossRef] [Green Version]
- Fragapane, G.; Ivanov, D.; Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics. Ann. Oper. Res. 2022, 308, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, Z.; Wang, L.; Lin, H.; Jiang, Z.; Li, S.; Chen, D. Real-Time Dynamic Path Planning of Mobile Robots: A Novel Hybrid Heuristic Optimization Algorithm. Sensors 2020, 20, 188. [Google Scholar] [CrossRef] [Green Version]
- Gyenes, Z.; Gincsainé Szádeczky-Kardoss, E. Uncertain estimation-based motion-planning algorithms for mobile robots. Acta IMEKO 2021, 10, 51–60. [Google Scholar] [CrossRef]
- Gyenes, Z.; Gincsainé Szádeczky-Kardoss, E. Motion planning for mobile robots using uncertain estimations about the environment. In Proceedings of the 2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR), Budapest, Hungary, 15–17 October 2020; pp. 1–6. [Google Scholar]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.; Gavrila, D.; Arras, K. Human motion trajectory prediction: A survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Gyenes, Z.; Mamaev, I.; Yang, D.; Gincsainé Szádeczky-Kardoss, E.; Hein, B. Motion Planning for Mobile Robots using the Human Tracking Velocity Obstacles Method. In Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics—ICINCO, Lisbon, Portugal, 14–16 July 2022; pp. 484–491. [Google Scholar]
- Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic methods? Annu. Rev. Control. 2020, 50, 233–252. [Google Scholar] [CrossRef]
- Cannon, J.; Rose, K.; Ruml, W. Real-time Motion Planning with Dynamic Obstacles. AI Commun. 2014, 27, 345–362. [Google Scholar] [CrossRef]
- Petereit, J.; Emter, T.; Frey, C.W.; Kopfstedt, T.; Beutel, A. Application of hybrid A* to an autonomous mobile robot for path planning in unstructured outdoor environments. In Proceedings of the 7th German Conference on Robotics (ROBOTIK-2012), Munich, Germany, 21–22 May 2012; pp. 1–6. [Google Scholar]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report TR 98-11; Department Computer Science, Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Noreen, I.; Khan, A.; Ryu, H.; Doh, N.L.; Habib, Z. Optimal path planning in cluttered environment using RRT*-AB. Intell. Serv. Robot. 2018, 11, 41–52. [Google Scholar] [CrossRef]
- Dong, Y.; Camci, E.; Kayacan, E. Faster RRT-based nonholonomic path planning in 2D building environments using skeleton-constrained path biasing. J. Intell. Robot. Syst. 2018, 89, 387–401. [Google Scholar] [CrossRef]
- Reif, J.H.; Wang, H. Social potential fields: A distributed behavioral control for autonomous robots. Robot. Auton. Syst. 1999, 27, 171–194. [Google Scholar] [CrossRef]
- Li, G.; Tamura, Y.; Yamashita, A.; Asama, H. Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning. Int. J. Mechatronics Autom. 2013, 3, 141–170. [Google Scholar] [CrossRef] [Green Version]
- Kovács, B.; Szayer, G.; Tajti, F.; Burdelis, M.; Korondi, P. A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robot. Auton. Syst. 2016, 82, 24–34. [Google Scholar] [CrossRef]
- Chiang, H.T.; Malone, N.; Lesser, K.; Oishi, M.; Tapia, L. Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2347–2354. [Google Scholar]
- Qixin, C.; Yanwen, H.; Jingliang, Z. An evolutionary artificial potential field algorithm for dynamic path planning of mobile robot. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3331–3336. [Google Scholar]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Brock, O.; Khatib, O. High-speed navigation using the global dynamic window approach. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999; Volume 1, pp. 341–346. [Google Scholar]
- Wu, B.; Chi, X.; Zhao, C.; Zhang, W.; Lu, Y.; Jiang, D. Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm. Sensors 2022, 22, 7079. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Wilkie, D.; Van Den Berg, J.; Manocha, D. Generalized velocity obstacles. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5573–5578. [Google Scholar]
- Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. Smooth and collision-free navigation for multiple robots under differential-drive constraints. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4584–4589. [Google Scholar]
- Huang, Y.; Chen, L.; Van Gelder, P. Generalized velocity obstacle algorithm for preventing ship collisions at sea. Ocean Eng. 2019, 173, 142–156. [Google Scholar] [CrossRef]
- Battisti, T.; Muradore, R. A velocity obstacles approach for autonomous landing and teleoperated robots. Auton. Robot. 2020, 44, 217–232. [Google Scholar] [CrossRef]
- Van Den Berg, J.; Snape, J.; Guy, S.J.; Manocha, D. Reciprocal collision avoidance with acceleration-velocity obstacles. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3475–3482. [Google Scholar]
- Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Douthwaite, J.A.; Zhao, S.; Mihaylova, L.S. Velocity obstacle approaches for multi-agent collision avoidance. Unmanned Syst. 2019, 7, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Vesentini, F.; Muradore, R. Velocity Obstacle-based Trajectory Planner for Two-Link Planar Manipulators. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 June–2 July 2021; pp. 690–695. [Google Scholar]
- Gul, O.M.; Erkmen, A.M. Energy-efficient cluster-based data collection by a UAV with a limited-capacity battery in robotic wireless sensor networks. Sensors 2020, 20, 5865. [Google Scholar] [CrossRef] [PubMed]
- Gul, O.M.; Erkmen, A.M.; Kantarci, B. UAV-Driven sustainable and Quality-Aware data collection in robotic wireless sensor networks. IEEE Internet Things J. 2022, 9, 25150–25164. [Google Scholar] [CrossRef]
- Ashiru, I.; Czarnecki, C. Optimal motion planning for mobile robots using genetic algorithms. In Proceedings of the IEEE/IAS International Conference on Industrial Automation and Control, Hyderabad, India, 5–7 January 1995; pp. 297–300. [Google Scholar]
- Alajlan, M.; Koubaa, A.; Chaari, I.; Bennaceur, H.; Ammar, A. Global path planning for mobile robots in large-scale grid environments using genetic algorithms. In Proceedings of the 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR), Sousse, Tunisia, 15–17 December 2013; pp. 1–8. [Google Scholar]
- Santiago, R.M.C.; De Ocampo, A.L.; Ubando, A.T.; Bandala, A.A.; Dadios, E.P. Path planning for mobile robots using genetic algorithm and probabilistic roadmap. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–5. [Google Scholar]
- Xue, Y. Mobile Robot Path Planning with a Non-Dominated Sorting Genetic Algorithm. Appl. Sci. 2018, 8, 2253. [Google Scholar] [CrossRef] [Green Version]
- Panda, R.K.; Choudhury, B. An effective path planning of mobile robot using genetic algorithm. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 13–14 February 2015; pp. 287–291. [Google Scholar]
- Savage, J.; Munoz, S.; Matamoros, M.; Osorio, R. Obstacle avoidance behaviors for mobile robots using genetic algorithms and recurrent neural networks. IFAC Proc. Vol. 2013, 46, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm. Comput. Electr. Eng. 2012, 38, 1564–1572. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Yin, Y.; Wang, Z.; Liu, G. An improved genetic algorithm of optimum path planning for mobile robots. In Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jian, China, 16–18 October 2006; Volume 2, pp. 637–642. [Google Scholar]
- Baker, J.E. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, Cambridge, MA, USA, 28–31 July 1987; Volume 206, pp. 14–21. [Google Scholar]
- Gyenes, Z.; Szádeczky-Kardoss, E.G. Motion planning for mobile robots using the Safety Velocity Obstacles method. In Proceedings of the 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 28–31 May 2018; pp. 389–394. [Google Scholar]
- Gyenes, Z.; Szádeczky-Kardoss, E.G. Particle filter-based perception method for obstacles in dynamic environment of a mobile robot. In Proceedings of the 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 23–26 August 2021; pp. 97–102. [Google Scholar]
N | Variant | Max Gen. | Best Gen. | Best Time [s] | Best Fitness | |
---|---|---|---|---|---|---|
20 | 5 | GAVO-MUT | 45 | 13 | 0.0621 | 0.7000 |
20 | 5 | GAVO-2D | 97 | 7 | 0.0136 | 0.7000 |
20 | 5 | GAVO-1D | 103 | 38 | 0.0427 | 0.6800 |
20 | 5 | GAVO-Polar | 100 | 15 | 0.0209 | 0.7000 |
20 | 10 | GAVO-MUT | 51 | 17 | 0.0536 | 0.7000 |
20 | 10 | GAVO-2D | 69 | 10 | 0.0257 | 0.7000 |
20 | 10 | GAVO-1D | 80 | 124 | 0.1485 | 0.6800 |
20 | 10 | GAVO-Polar | 73 | 16 | 0.0228 | 0.7000 |
50 | 5 | GAVO-MUT | 42 | 12 | 0.0402 | 0.7000 |
50 | 5 | GAVO-2D | 42 | 8 | 0.0190 | 0.7000 |
50 | 5 | GAVO-1D | 55 | 76 | 0.1526 | 0.6900 |
50 | 5 | GAVO-Polar | 49 | 15 | 0.0340 | 0.7000 |
50 | 10 | GAVO-MUT | 36 | 14 | 0.0384 | 0.7000 |
50 | 10 | GAVO-2D | 32 | 9 | 0.0190 | 0.7000 |
50 | 10 | GAVO-1D | 38 | 28 | 0.0770 | 0.6900 |
50 | 10 | GAVO-Polar | 42 | 16 | 0.0374 | 0.7000 |
100 | 5 | GAVO-MUT | 31 | 12 | 0.0369 | 0.7000 |
100 | 5 | GAVO-2D | 32 | 5 | 0.0133 | 0.7000 |
100 | 5 | GAVO-1D | 31 | 14 | 0.0457 | 0.6800 |
100 | 5 | GAVO-Polar | 32 | 17 | 0.0517 | 0.7000 |
100 | 10 | GAVO-MUT | 27 | 11 | 0.0400 | 0.7000 |
100 | 10 | GAVO-2D | 28 | 15 | 0.0140 | 0.7000 |
100 | 10 | GAVO-1D | 23 | 7 | 0.0254 | 0.6700 |
100 | 10 | GAVO-Polar | 31 | 18 | 0.0577 | 0.7000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyenes, Z.; Bölöni, L.; Szádeczky-Kardoss, E.G. Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots? Sensors 2023, 23, 3039. https://doi.org/10.3390/s23063039
Gyenes Z, Bölöni L, Szádeczky-Kardoss EG. Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots? Sensors. 2023; 23(6):3039. https://doi.org/10.3390/s23063039
Chicago/Turabian StyleGyenes, Zoltán, Ladislau Bölöni, and Emese Gincsainé Szádeczky-Kardoss. 2023. "Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots?" Sensors 23, no. 6: 3039. https://doi.org/10.3390/s23063039
APA StyleGyenes, Z., Bölöni, L., & Szádeczky-Kardoss, E. G. (2023). Can Genetic Algorithms Be Used for Real-Time Obstacle Avoidance for LiDAR-Equipped Mobile Robots? Sensors, 23(6), 3039. https://doi.org/10.3390/s23063039