An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Design
2.2. Experimental Protocol
2.2.1. Motion Capture
2.2.2. EMG Data
2.2.3. Kinematics of Motion
2.2.4. Test Protocol
2.2.5. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, I.; McCormack, A. The implementation of resistance training principles in exercise interventions for lower limb tendinopathy: A systematic review. Phys. Ther. Sport 2021, 50, 97–113. [Google Scholar] [CrossRef]
- Tanaka, H. Swimming exercise: Impact of aquatic exercise on cardiovascular health. Sports Med. 2009, 39, 377–387. [Google Scholar] [CrossRef]
- Assar, S.; Gandomi, F.; Mozafari, M.; Sohaili, F. The effect of Total resistance exercise vs. aquatic training on self-reported knee instability, pain, and stiffness in women with knee osteoarthritis: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2020, 12, 27. [Google Scholar] [CrossRef]
- Abadi, F.H.; Sankaravel, M.; Zainuddin, F.F.; Elumalai, G.; Choo, L.A.; Sattari, H. A perspective on water properties and aquatic exercise for older adults. Int. J. Aging Health Mov. 2020, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liu, C.; Shiao, A.; Wang, T. Ear Problems in Swimmers. J. Chin. Med. Assoc. 2005, 68, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Fransen, M.; McConnell, S. Land-based exercise for osteoarthritis of the knee: A metaanalysis of randomized controlled trials. J. Rheumatol. 2009, 36, 1109–1117. [Google Scholar] [CrossRef]
- Ribeiro, F.; Oliveira, J. Aging effects on joint proprioception: The role of physical activity in proprioception preservation. Eur. Rev. Aging Phys. Act. 2007, 4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Pauelsen, M.; Jafari, H.; Strandkvist, V.; Nyberg, L.; Gustafsson, T.; Vikman, I.; Röijezon, U. Frequency domain shows: Fall-related concerns and sensorimotor decline explain inability to adjust postural control strategy in older adults. PLoS ONE 2020, 15, e0242608. [Google Scholar] [CrossRef]
- LeWitt, P.; Kymes, S.; Hauser, R.A. Parkinson Disease and Orthostatic Hypotension in the Elderly: Recognition and Management of Risk Factors for Falls. Aging Dis. 2020, 11, 671–679. [Google Scholar] [CrossRef]
- Kennedy, R.; Carroll, K.; Hepworth, G.; Paterson, K.L.; Ryan, M.M.; McGinley, J.L. Falls in paediatric Charcot-Marie-Tooth disease: A 6-month prospective cohort study. Arch. Dis. Child. 2019, 104, 535–540. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, P.; Dou, Q.; Wang, C.; Zhang, W.; Yang, Y.; Wang, J.; Xie, X.; Zhou, J.; Zeng, Y. Falls among older adults with sarcopenia dwelling in nursing home or community: A meta-analysis. Clin. Nutr. 2019, 39, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kosik, K.B.; Johnson, N.F.; Terada, M.; Thomas, A.C.; Mattacola, C.G.; Gribble, P.A. Decreased dynamic balance and dorsiflexion range of motion in young and middle-aged adults with chronic ankle instability. J. Sci. Med. Sport 2019, 22, 976–980. [Google Scholar] [CrossRef]
- Palakurthi, B.; Burugupally, S.P. Postural instability in Parkinson’s disease: A review. Brain Sci. 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Gerhardy, T.; Gordt, K.; Jansen, C.-P.; Schwenk, M. Towards using the instrumented timed up-and-go test for screening of sensory system performance for balance control in older adults. Sensors 2019, 19, 622. [Google Scholar] [CrossRef] [Green Version]
- Johnston, T.E. Biomechanical considerations for cycling interventions in rehabilitation. Phys. Ther. 2007, 87, 1243–1252. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Cho, H.Y.; Kim, Y.L.; Lee, S.M. Effects of stationary cycling exercise on the balance and gait abilities of chronic stroke patients. J. Phys. Ther. Sci. 2015, 27, 3529–3531. [Google Scholar] [CrossRef]
- Alkatan, M.F.; Akkari, A.; Pasha, E. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis. Artic. J. Rheumatol. 2016, 43, 666–672. [Google Scholar] [CrossRef]
- Escalante, Y.; Saavedra, J.M.; García-Hermoso, A.; Silva, A.J.; Barbosa, T.M. Physical exercise and reduction of pain in adults with lower limb osteoarthritis: A systematic review. J. Back Musculoskelet. Rehabil. 2010, 23, 175–186. [Google Scholar] [CrossRef]
- Esser, S.; Bailey, A. Effects of exercise and physical activity on knee osteoarthritis. Curr. Pain Headache Rep. 2011, 15, 423–430. [Google Scholar] [CrossRef]
- Watanabe, T.; Murakami, T.; Handa, Y. Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation. IEEE Int. Conf. Rehabil. Robot. 2013, 2013, 6650484. [Google Scholar] [CrossRef]
- Escalante, Y.; García-Hermoso, A.; Saavedra, J.M. Effects of exercise on functional aerobic capacity in lower limb osteoarthritis: A systematic review. J. Sci. Med. Sport 2011, 14, 190–198. [Google Scholar] [CrossRef]
- Salacinski, A.J.; Krohn, K.; Lewis, S.F.; Holland, M.L.; Ireland, K.; Marchetti, G. The effects of group cycling on gait and pain-related disability in individuals with mild-to-moderate knee osteoarthritis: A randomized controlled trial. J. Orthop. Sports Phys. Ther. 2012, 42, 985–995. [Google Scholar] [CrossRef]
- Dawson-Elli, A.R.; Adamczyk, P.G. NOTTABIKE—A haptic robot for studying motor control and applying rehabilitation in the lower limb. Presented at the International Socieaty of Biomechanics, Calgary, AB, Canada, 31 July 2019. [Google Scholar]
- Garcia, F.; Ferreira, J.P.; Ferreira, P.; Cruz, S.; Crisostomo, M.; Coimbra, A.P. Active pedal exerciser for leg rehabilitation. In Proceedings of the 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal, 26–28 February 2015. [Google Scholar] [CrossRef] [Green Version]
- Abdar, H.M.; Advisor, D.; Loparo, K. Development of an Intelligent Exercise Platform for Rehabilitation in Parkinson’s Disease. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2014. [Google Scholar]
- Mohammadi-Abdar, H.; Ridgel, A.L.; Discenzo, F.M.; Loparo, K.A. Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease. IEEE/ASME Trans. Mechatron. 2016, 21, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Balbinot, A.; Milani, C.; da Nascimento, J.S.B. A new crank arm-based load cell for the 3D analysis of the force applied by a cyclist. Sensors 2014, 14, 22921–22939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plug-In Gait Reference Guide. 2016-Tracker 3.3 Documentation-Vicon Documentation. Available online: https://docs.vicon.com/display/Tracker33/PDF+downloads+for+Vicon+Tracker?preview=/25296959/25297246/Vicon%20Tracker%20User%20Guide.pdf (accessed on 11 October 2022).
- Zebis, M.K.; Aagaard, P.; Andersen, L.L.; Hölmich, P.; Clausen, M.B.; Brandt, M.; Husted, R.S.; Lauridsen, H.B.; Curtis, D.J.; Bencke, J. First-time anterior cruciate ligament injury in adolescent female elite athletes: A prospective cohort study to identify modifiable risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2021, 30, 1341–1351. [Google Scholar] [CrossRef]
- Howard, R.M.; Conway, R.; Harrison, A.J. An exploration of eliminating cross-talk in surface electromyography using independent component analysis. In Proceedings of the 2015 26th Irish Signals and Systems Conference (ISSC), Carlow, Ireland, 24–25 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.J.; Freriks, B. The State of the Art on Sensors and Sensor Placement Procedures for Surface ElectroMyoGraphy: A Proposal for Sensor Placement Procedures Deliverable of the SENIAM Project Editors. Available online: http://www.seniam.org/ (accessed on 5 November 2022).
- Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.M.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface electromyography signal processing and classification techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Kuhn, B. A Comparison of Three Bicycle Pedal Types and Power Output. Available online: https://scholars.fhsu.edu/theses (accessed on 19 April 2022).
- So, R.C.; Ng, J.K.-F.; Ng, G.Y. Muscle recruitment pattern in cycling: A review. Phys. Ther. Sport 2005, 6, 89–96. [Google Scholar] [CrossRef]
- da Silva, J.; Tarassova, O.; Ekblom, M.; Andersson, E.; Rönquist, G.; Arndt, A. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur. J. Appl. Physiol. 2016, 116, 1807–1817. [Google Scholar] [CrossRef] [Green Version]
Component | Type/Technology | Specification |
---|---|---|
Master Controller | Arduino Mega | 54 I/O pin, 16 Analog pin |
Slave Controller | Arduino Nano | Small board, based on the ATmega328 |
Crank Position Sensing System | Hall sensor (A3144E) | Weight: 1 gr, Digital Output Sensor |
Force sensor | Strain gauge | Resistance: 349.8 ± 0.1 Ω, Sensitivity coefficient (gauge factor): 2.0–2.20 |
Actuator | Brushless DC motor | 450 W BLDC rear-hub motor, |
Communication device | Radio module (NRF24) | 2.4 GHz band transceiver |
Power Supply | Battery | 48 Volts, 13 AH |
Smart Trainer | Saris M2 | ±5% accuracy, Noise level: 69 decibels at 20 mph |
AUC of Crank Perpendicular Force | |||
---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | |
Session (A) | 2778 (407) | 1828 (451) | 1822 (442) |
Session (I) | 3521 (560) | 2247 (453) | 3938 (734) |
p-value | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozinski, J.; Heidary, S.H.; Brandon, S.C.E.; Komeili, A. An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling. Sensors 2023, 23, 2846. https://doi.org/10.3390/s23052846
Lozinski J, Heidary SH, Brandon SCE, Komeili A. An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling. Sensors. 2023; 23(5):2846. https://doi.org/10.3390/s23052846
Chicago/Turabian StyleLozinski, Jesse, Seyed Hamidreza Heidary, Scott C. E. Brandon, and Amin Komeili. 2023. "An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling" Sensors 23, no. 5: 2846. https://doi.org/10.3390/s23052846
APA StyleLozinski, J., Heidary, S. H., Brandon, S. C. E., & Komeili, A. (2023). An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling. Sensors, 23(5), 2846. https://doi.org/10.3390/s23052846