Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Works
3. System Model
3.1. Network Model
3.2. Energy Model
3.3. K-Medoids with an Adaptive Sailfish Optimization (ASFO) Algorithm for CH Selection
Algorithm 1: Algorithm for clustering using K-medoids with a Sailfish Optimizer |
Network Initialization Step 1: Initialization of the WSN Step 2: Locate BS at coordinates (50, 180) Step 3: Place all the SNs arbitrarily Formation of clusters using K-medoids and selection of CH using ASFO Step 4: Number of nodes N divided into several clusters Step 5: Every cluster has N nodes, and each node is related to its nearest CH Step 6: Randomly select the first CH by selecting the first random medoid from N in the cluster Step 7: Three-dimensional coordinates (x, y, z) are generated by every normal node to CH Step 8: K-means distance calculation is performed by the CH Step 9: ASFO algorithm is used to select the new CH and center the cluster node Step 10: Repeat step 7 to 9 until the node in the absolute center is found End |
3.4. E-CERP Routing Algorithm for a WSN
- High data transmission complexity occurs when the number of constraints increases due to the limited computing power of the WSNs.
- They are challenging to integrate.
- They have a high power consumption, packet loss, delivery rate, and communication delay.
4. Experimental Results and Discussion
4.1. Performance Analysis of Clustering and Routing
4.2. Performance Analysis of Clustering
4.3. Energy Consumption
4.4. Network Lifetime
4.5. Throughput
4.6. End-to-End Delay
4.7. Packet Delivery Ratio (PDR)
4.8. Packet Loss Ratio (PLR)
4.9. Jitter
4.10. Evaluation of the Proposed ASFO and E-CERP Approach with Conventional Techniques
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Abbreviation |
ASFO | Adaptive Sailfish Optimization |
HEED | Hybrid Energy-Efficient Distributed clustering algorithm |
HCDA | Heterogeneous Cluster-based Data Acquisition |
EAANFC | Energy-Aware Adaptive Fuzzy Neural Clustering |
moFIS | Multi-Objective Fuzzy Inference System |
BFO | Bacterial Foraging Optimization |
NICC | Natural Inspired Cross-Layer Clustering |
SVM | Support Vector Machine |
ISFO | Improved Sunflower Optimization |
E-CERP | Energy efficient Cross-layer-based Expedient Routing Protocol |
CORP | Cross-layer-based Opportunistic Routing Protocol |
RSSI | Received Signal Strength Indicator |
CLAT | Cross-Layer-Based Adaptive Thresholding |
WOA | Whale Optimization Algorithm |
CLFL | Cross-Layer Fuzzy Logic |
FABC-MACRD | Fuzzy and Artificial Bee Colony-based implementation of MAC, Clustering, Routing, and Data delivery |
CMRP | Clustering and Multihop Routing Protocol |
References
- Chand, S.; Singh, S.; Kumar, B. Heterogeneous HEED protocol for wireless sensor networks. Wirel. Pers. Commun. 2014, 77, 2117–2139. [Google Scholar] [CrossRef]
- Mittal, N.; Singh, U.; Salgotra, R. Tree-based threshold-sensitive energy-efficient routing approach for wireless sensor networks. Wirel. Pers. Commun. 2019, 108, 473–492. [Google Scholar] [CrossRef]
- Maraiya, K.; Kant, K.; Gupta, N. Efficient cluster head selection scheme for data aggregation in wireless sensor network. Int. J. Comput. Appl. 2011, 23, 10–18. [Google Scholar] [CrossRef]
- Darabkh, K.A.; El-Yabroudi, M.Z.; El-Mousa, A.H. BPA-CRP: A balanced power-aware clustering and routing protocol for wireless sensor networks. Ad Hoc Netw. 2019, 82, 155–171. [Google Scholar] [CrossRef]
- Mehmood, A.; Khan, S.; Shams, B.; Lloret, J. Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. Int. J. Commun. Syst. 2015, 28, 972–989. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, W.; Yang, W.; Li, Z.; Gao, W.; Yang, Y. Trust management-based and energy efficient hierarchical routing protocol in wireless sensor networks. Digit. Commun. Netw. 2021, 7, 470–478. [Google Scholar] [CrossRef]
- Guerroumi, M.; Badache, N.; Moussaoui, S. Mobile sink and power management for efficient data dissemination in wireless sensor networks. Telecommun. Syst. 2015, 58, 279–292. [Google Scholar] [CrossRef]
- Sharma, S.; Puthal, D.; Jena, S.K.; Zomaya, A.Y.; Ranjan, R. Rendezvous based routing protocol for wireless sensor networks with mobile sink. J. Supercomput. 2017, 73, 1168–1188. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Dong, Z.; Xiong, F. Joint design of energy-efficient clustering and data recovery for wireless sensor networks. IEEE Access 2017, 5, 3646–3656. [Google Scholar] [CrossRef]
- Soleymani, S.A.; Goudarzi, S.; Kama, N.; Adli Ismail, S.; Ali, M.; MD Zainal, Z.; Zareei, M. A hybrid prediction model for energy-efficient data collection in wireless sensor networks. Symmetry 2020, 12, 2024. [Google Scholar] [CrossRef]
- Latha, A.; Prasanna, S.; Hemalatha, S.; Sivakumar, B. A harmonized trust assisted energy efficient data aggregation scheme for distributed sensor networks. Cogn. Syst. Res. 2019, 56, 14–22. [Google Scholar] [CrossRef]
- Tandon, A.; Kumar, P.; Rishiwal, V.; Yadav, M.; Yadav, P. A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT. KSII Trans. Internet Inf. Syst. 2021, 15, 1317–1341. [Google Scholar]
- Ramachandran, N.; Perumal, V. Delay-aware heterogeneous cluster-based data acquisition in Internet of Things. Comput. Electr. Eng. 2018, 65, 44–58. [Google Scholar] [CrossRef]
- Daniel, A.; Baalamurugan, K.M.; Vijay, R.; Arjun, K.P. Energy aware clustering with multihop routing algorithm for wireless sensor networks. Intell. Autom. Soft Comput. 2021, 29, 233–246. [Google Scholar] [CrossRef]
- Mahajan, H.B.; Badarla, A. Cross-layer protocol for WSN-assisted IoT smart farming applications using nature inspired algorithm. Wirel. Pers. Commun. 2021, 121, 3125–3149. [Google Scholar] [CrossRef]
- Venkatesan, C.; Balamurugan, D.; Thamaraimanalan, T.; Ramkumar, M. Efficient Machine Learning Technique for Tumor Classification Based on Gene Expression Data. Int. Conf. Adv. Comput. Commun. Syst. 2022, 1, 1982–1986. [Google Scholar]
- Raslan, A.F.; Ali, A.F.; Darwish, A.; El-Sherbiny, H.M. An Improved Sunflower Optimization Algorithm for Cluster Head Selection in the Internet of Things. IEEE Access 2021, 9, 156171–156186. [Google Scholar] [CrossRef]
- Iwendi, C.; Maddikunta, P.K.R.; Gadekallu, T.R.; Lakshmanna, K.; Bashir, A.K.; Piran, M.J. A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. Pract. Exp. 2021, 51, 2558–2571. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Niu, J.; Liu, W. A K-medoids based clustering algorithm for wireless sensor networks. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [Google Scholar]
- Tam, N.T.; Hai, D.T.; Son, L.H.; Vinh, L.T. Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization. Wirel. Netw. 2018, 24, 1477–1490. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S. Hybrid clustering analysis using improved krill herd algorithm. Appl. Intell. 2008, 48, 4047–4071. [Google Scholar] [CrossRef]
- Singh, R.; Verma, A.K. Energy efficient cross layer based adaptive threshold routing protocol for WSN. AEU-Int. J. Electron. Commun. 2017, 72, 166–173. [Google Scholar] [CrossRef]
- Messaoudi, A.; Elkamel, R.; Helali, A.; Bouallegue, R. Cross-layer based routing protocol for wireless sensor networks using a fuzzy logic module. In Proceedings of the 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 764–769. [Google Scholar]
- Echoukairi, H.; Kada, A.; Bouragba, K.; Ouzzif, M. A novel centralized clustering approach based on k-means algorithm for wireless sensor network. In Proceedings of the 2017 Computing Conference, London, UK, 18–20 July 2017; pp. 1259–1262. [Google Scholar]
- Kavitha, K.; Thamaraimanalan, T.; Kumar, M.S. An optimized heal algorithm for hole detection and healing in wireless sensor networks. Int. J. Adv. Eng. Res. Technol. 2014, 2, 243–249. [Google Scholar]
- Shanmugam, R.; Kaliaperumal, B. An energy-efficient clustering and cross-layer-based opportunistic routing protocol (CORP) for wireless sensor network. Int. J. Commun. Syst. 2021, 34, e4752. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of nodes | 500 |
Deployment area | 500 × 500 |
Total Clusters | 6 |
Packet size | 512 bytes |
Packet sending rate | 1 packet/s |
Initial energy | 0.5 J |
Data samples | 55 |
Approaches | Average Energy Consumed (J) vs. Cluster Size | ||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
K-means | 0.024 | 0.029 | 0.0343 | 0.038 | 0.041 | 0.045 | 0.049 | 0.059 | 0.0638 |
Fuzzy C-means | 0.029 | 0.039 | 0.041 | 0.046 | 0.052 | 0.056 | 0.061 | 0.069 | 0.074 |
Proposed | 0.019 | 0.023 | 0.028 | 0.029 | 0.033 | 0.035 | 0.037 | 0.039 | 0.0423 |
Approaches | Average Energy Consumed (J) vs. Rounds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 750 | 1000 | 1250 | 1500 | 1750 | 2000 | 2250 | 2500 | |
Krill herd | 49.04 | 34.33 | 29.43 | 24.52 | 17.66 | 7.85 | 2.94 | 0.49 | 0 | 0 | 0 |
WOA | 47.08 | 29.43 | 24.52 | 19.62 | 9.81 | 4.9 | 0.98 | 0.02 | 0 | 0 | 0 |
Proposed | 49.04 | 39.23 | 34.33 | 29.43 | 19.62 | 9.81 | 4.9 | 0.98 | 0 | 0 | 0 |
Techniques | Average Energy Consumed | Network Lifespan | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Nodes | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 |
Proposed CERP | 1.97 | 1.10 | 5.13 | 4.80 | 4.19 | 5908 | 5711 | 5514 | 5218 | 5022 |
CLAT | 7.75 | 5.51 | 7.91 | 7.45 | 7.55 | 5395 | 5100 | 4904 | 4708 | 4610 |
CLFL | 8.43 | 10.36 | 9.53 | 11.23 | 10.37 | 4904 | 4708 | 4610 | 4218 | 4021 |
Methods | Throughput | End-to-End Delay | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Nodes | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 |
Proposed CERP | 0.99 | 0.98 | 0.96 | 0.95 | 0.94 | 0.0492 | 0.0689 | 1.9692 | 3.9384 | 5.9076 |
CLAT | 0.96 | 0.93 | 0.93 | 0.93 | 0.91 | 1.9617 | 3.6785 | 4.1686 | 5.1494 | 6.1302 |
CLFL | 0.95 | 0.91 | 0.90 | 0.90 | 0.88 | 2.9425 | 4.9042 | 5.8851 | 7.3563 | 8.8276 |
Techniques | PDR | PLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Nodes | 100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 |
Proposed CERP | 100 | 100 | 98 | 96 | 96 | 0 | 0 | 2.03 | 3.51 | 4 |
CLAT | 97 | 96 | 96 | 95 | 94 | 2.57 | 3.87 | 4.44 | 5.26 | 5.83 |
CLFL | 95 | 91 | 90 | 90 | 88 | 4.53 | 8.78 | 9.76 | 10.42 | 11.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherappa, V.; Thangarajan, T.; Meenakshi Sundaram, S.S.; Hajjej, F.; Munusamy, A.K.; Shanmugam, R. Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks. Sensors 2023, 23, 2788. https://doi.org/10.3390/s23052788
Cherappa V, Thangarajan T, Meenakshi Sundaram SS, Hajjej F, Munusamy AK, Shanmugam R. Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks. Sensors. 2023; 23(5):2788. https://doi.org/10.3390/s23052788
Chicago/Turabian StyleCherappa, Venkatesan, Thamaraimanalan Thangarajan, Sivagama Sundari Meenakshi Sundaram, Fahima Hajjej, Arun Kumar Munusamy, and Ramalingam Shanmugam. 2023. "Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks" Sensors 23, no. 5: 2788. https://doi.org/10.3390/s23052788
APA StyleCherappa, V., Thangarajan, T., Meenakshi Sundaram, S. S., Hajjej, F., Munusamy, A. K., & Shanmugam, R. (2023). Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks. Sensors, 23(5), 2788. https://doi.org/10.3390/s23052788