Soft Sensor Design via Switching Observers
Abstract
:1. Introduction
2. The Nonlinear Model of a Chemostat
3. The Linear Approximants of the Chemostat
- If , then .
- If , then .
- If , then .
4. Observer Design Using the Coefficients of the I/O Linear Approximant of the Chemostat
4.1. Observer Design
4.2. The General Solution of the Measurement Output Vector in the Observer Dynamics
5. A Framework for Linear Observer Design through Parameter Identification of SISO I/O Linear Approximants
5.1. The General Framework
- (a)
- The structure of the vector functions is known but the physical parameters evaluating the elements of the vector function are not known except the parameters being independent of current characteristics of the process. Indicatively, for the case of the chemostat presented in Section 2, all parameters are unknown except the parameter .
- (b)
- The output variable and the input variable of the process are measured in real time.
- (c)
- Additionally, the operating trajectory of the nonlinear process, namely the values of and for every , in an appropriate operation domain, is considered to be known. Indicatively see Figure 1 where the operating trajectory of a chemostat is depicted. The operating trajectory can be determined using small scale experiments around different operating values of the process and possibly appropriate measurement devices, in the case where the process is out of production mode. The operation domain of the operating values of the input is denoted by .
5.2. Observer Design Using Parameter Identification of the I/O Linear Approximant of the Chemostat
6. A Framework for Switching Observer Design through Parameter Identification of SISO I/O Linear Approximants
6.1. A Multi-Model Description of a Nonlinear SISO Process
6.2. Observer Design Using the Coefficients of Each I/O Linear Approximant of the Web of Operating Points
6.3. Observer Design Using the Identified Coefficients of Each I/O Linear Approximant of the Web of Operating Points
6.4. Stepwise Transitions
6.5. Performance of the Switching Observer Scheme for the Chemostat
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Xie, M. Rebooting data-driven soft-sensors in process industries: A review of kernel methods. J. Process Control 2020, 89, 58–73. [Google Scholar] [CrossRef]
- Moushaee, P.; Babazadeh, M. Pole assignment and distributed output feedback control via graph-based decomposition. Int. J. Control 2022, 1–14. [Google Scholar] [CrossRef]
- Koumboulis, F.N.; Tzierakis, K.G. Meeting transfer function requirements via static measurement output feedback. J. Frankl. Inst. 1998, 335, 661–677. [Google Scholar] [CrossRef]
- Koumboulis, F.N.; Kouvakas, N.D.; Paraskevopoulos, P.N. On the Morgan’s problem for neutral time delay systems via dynamic controllers with application to a test case central heating system. In Proceedings of the 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A Review on Soft Sensors for Monitoring, Control and Optimization of Industrial Processes. IEEE Sens. J. 2021, 21, 12868–12881. [Google Scholar] [CrossRef]
- Souza, F.A.A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression application. Chemom. Intell. Lab. Syst. 2016, 152, 69–79. [Google Scholar] [CrossRef]
- Ma, M.-D.; Ko, J.-W.; Wang, S.-J.; Wu, M.-F.; Jang, S.-S.; Shieh, S.-S.; Wong, D.S.-H. Development of adaptive soft sensor based on statistical identification of key variables. Control Eng. Pract. 2009, 17, 1026–1034. [Google Scholar] [CrossRef]
- Shoorehdeli, M.A.; Teshnehlab, M.; Sedigh, A.K. Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets Syst. 2009, 160, 922–948. [Google Scholar] [CrossRef]
- Mendes, J.; Souza, F.; Araújo, R.; Gonçalves, N. Genetic fuzzy system for data-driven soft sensors. Appl. Soft Comput. 2012, 12, 3237–3245. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Shi, P.; Lam, H. Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 2016, 61, 2745–2751. [Google Scholar] [CrossRef]
- Ding, S.X. Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results. J. Process Control 2014, 24, 431–449. [Google Scholar] [CrossRef]
- Yan, W.; Tang, D.; Lin, Y. A data-driven soft sensor modeling method based on deep learning and its application. IEEE Trans. Ind. Electron. 2016, 64, 4237–4245. [Google Scholar] [CrossRef]
- Wu, X.; Chen, J.; Xie, L.; Chan, L.L.T.; Chen, C.-I. Development of convolutional neural network based gaussian process regression to construct a novel probabilistic virtual metrology in multi-stage semiconductor processes. Control Eng. Pract. 2020, 96, 104262. [Google Scholar] [CrossRef]
- Vallejo, M.; de la Espriella, C.; Gomez-Santamaria, J.; Ramirez-Barrera, A.F.; Delgado-Trejos, E. Soft metrology based on machine learning: A review. Meas. Sci. Technol. 2019, 3, 1–16. [Google Scholar] [CrossRef]
- Gryzlov, A.; Schiferli, W.; Mudde, R. Soft-sensors: Model-based estimation of inflow in horizontal wells using the extended Kalman filter. Flow Meas. Instrum. 2016, 34, 91–104. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Shardt, Y.; Li, X.; Cui, J.; Tong, C. A KPI-based soft sensor development approach incorporating infrequent, variable time delayed measurements. IEEE Trans. Control Syst. Technol. 2020, 28, 2523–2531. [Google Scholar] [CrossRef]
- Chen, J.; Lagoa, C.M. Observer Design for a Class of Switched Systems. In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 12–15 December 2005. [Google Scholar]
- Babaali, M.; Egerstedt, M. Asymptotic Observers For Discrete-Time Switched Linear Systems. In Proceedings of the IFAC World Congress, Prague, Czech Republic, 3–8 July 2005. [Google Scholar]
- Alessandri, A.; Coletta, P. Design of Observers For Switched Discrete-Time Linear Systems. In Proceedings of the American Control Conference, Denver, CO, USA, 4–6 June 2003. [Google Scholar]
- Koumboulis, F.N.; Fragkoulis, D.G. A Switching Observer Design Scheme for a Double Effect Evaporator. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Athens, Greece, 19–21 March 2012. [Google Scholar]
- Koumboulis, F.N.; Fragkoulis, D.G. Switching design for the observation of the biomass in Alcoholic Fermentation Processes. In Proceedings of the 26th International Conference on Information, Communication and Automation Technologies (ICAT 2017), Sarajevo, Bosnia and Herzegovina, 26–28 October 2017. [Google Scholar]
- Koumboulis, F.N.; King, R.E.; Stathaki, A. Logic-based switching controllers—A stepwise safe switching approach. Inf. Sci. 2007, 177, 2736–2755. [Google Scholar] [CrossRef]
- Koumboulis, F.N.; Tzamzi, M.P. Multivariable Step-Wise Safe Switching Controllers. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005. [Google Scholar] [CrossRef]
- Giannaris, G.L.; Kouvakas, N.D.; Koumboulis, F.N.; Vouyioukas, D. Switching Wireless Control for Longitudinal Quadrotor Maneuvers. J. Intell. Robot. Syst. 2021, 102. [Google Scholar] [CrossRef]
- Koumboulis, F.N.; Tzamtzi, M.P.; Economakos, C.E. Step-wise safe switching control of a constant turning force system. Int. J. Model. Identif. Control 2011, 12, 191–199. [Google Scholar] [CrossRef]
- Eykhoff, P. System Identification Parameter and State Estimation, 1st ed.; Wiley: London, UK, 1974. [Google Scholar]
- Schoukens, J.; Ljung, L. Nonlinear System Identification: A User-Oriented Road Map. IEEE Control Syst. Mag. 2019, 39, 28–99. [Google Scholar] [CrossRef]
- Didi, I.; Dib, H.; Cherki, B. An invariant observer for a chemostat model. Automatica 2014, 50, 2321–2326. [Google Scholar] [CrossRef]
- Guo, H.; Chen, L. Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control. J. Theor. Biol. 2009, 260, 502–509. [Google Scholar] [CrossRef] [PubMed]
- De Leenheer, P.; Smith, H. Feedback control for chemostat models. J. Math. Biol. 2003, 46, 48–70. [Google Scholar] [CrossRef] [PubMed]
- Dinh, M.; Fromion, V. A RBA model for the chemostat modelling. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019. [Google Scholar] [CrossRef]
- Kuenen, J.G. Continuous Cultures (Chemostats). In Encyclopedia of Microbiology, 4th ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 743–761. [Google Scholar]
- Molin, G. Measurement of the Maximum Specific Growth Rate in Chemostat of Pseudomonas spp. with Different Abilities for Biofilm Formation. Eur. J. Appl. Microbiol. Biotechnol. 1983, 18, 303–307. [Google Scholar] [CrossRef]
- Koga, S.; Humphrey, A.E. Study of the Dynamic Behavior of the Chemostat System. Biotechnol. Bioeng. 1967, 9, 375–386. [Google Scholar] [CrossRef]
- Pavlou, S. Dynamics of Chemostat in Which One Microbial Population Grows on Multiple Complementary Nutrients. Biotechnol. Bioeng. 1987, 30, 413–419. [Google Scholar] [CrossRef]
- Alcaraz, V.G. Estimation et Commande Robuste Non-Linéaires des Procédés Biologiques de Déppolution des Eaux Usées: Application à la Digestion Anaérobie. Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2001. [Google Scholar]
- Koumboulis, F.N.; Tzamtzi, M.P. A Metaheuristic Approach for Controller Design of Multivariable Processes. In Proceedings of the 12th IEEE Conference on Emerging Technologies and Factory Automation, Patras, Greece, 25–28 September 2007. [Google Scholar]
- Koumboulis, F.N.; Kouvakas, N.D. A three term controller for ride comfort improvement. In Proceedings of the 19th Mediterranean Conference on Control & Automation, Corfu, Greece, 20–23 June 2011. [Google Scholar]
- Åström, K.J.; Wittenmark, B. Adaptive Control; Dover Publications: New York, NY, USA, 2013. [Google Scholar]
- Sinha, N.K.; Rao, G.P. Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Alsuwian, T.; Amin, A.A.; Maqsood, M.T.; Qadir, M.B.; Almasabi, S.; Jalalah, M. Advanced Fault-Tolerant Anti-Surge Control System of Centrifugal Compressors for Sensor and Actuator Faults. Sensors 2022, 22, 3864. [Google Scholar] [CrossRef]
- Fragkoulis, D.; Li, Z.; Roux, G.; Dahhou, B. Application of a model based fault isolation method for nonlinear dynamic systems. In Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009. [Google Scholar] [CrossRef]
- Paraskevopoulos, P.N.; Koumboulis, F.N. Observers for singular systems. IEEE Trans. Autom. Control 1992, 37, 1211–1215. [Google Scholar] [CrossRef]
- Duan, G.-R. Analysis and Design of Descriptor Linear Systems; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Khooban, M.-H.; Dragicevic, T. (Eds.) Control Strategy for Time-Delay Systems, Part I: Concepts and Theories; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Khooban, M.-H.; Dragicevic, T. (Eds.) Control Strategy for Time-Delay Systems, Part II: Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumboulis, F.N.; Fragkoulis, D.G.; Kouvakas, N.D.; Feidopiasti, A. Soft Sensor Design via Switching Observers. Sensors 2023, 23, 2114. https://doi.org/10.3390/s23042114
Koumboulis FN, Fragkoulis DG, Kouvakas ND, Feidopiasti A. Soft Sensor Design via Switching Observers. Sensors. 2023; 23(4):2114. https://doi.org/10.3390/s23042114
Chicago/Turabian StyleKoumboulis, Fotis N., Dimitrios G. Fragkoulis, Nikolaos D. Kouvakas, and Aikaterini Feidopiasti. 2023. "Soft Sensor Design via Switching Observers" Sensors 23, no. 4: 2114. https://doi.org/10.3390/s23042114
APA StyleKoumboulis, F. N., Fragkoulis, D. G., Kouvakas, N. D., & Feidopiasti, A. (2023). Soft Sensor Design via Switching Observers. Sensors, 23(4), 2114. https://doi.org/10.3390/s23042114