Research on a Cooperative Adaptive Cruise Control (CACC) Algorithm Based on Frenet Frame with Lateral and Longitudinal Directions
Abstract
:1. Introduction
2. Related Work
3. Model for Vehicle Dynamics
4. Design of Control Strategy
4.1. Longitudinal Control
4.2. Lateral Control
5. Simulation Analysis
5.1. Trajectory Generation and Parameter Calculation
5.2. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Xi, W.; Zhang, Q.; Palacharla, P.; Ikeuchi, T. Cooperative autonomous driving for traffic congestion avoidance through vehicle-to-vehicle communications. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Turin, Italy, 27–29 November 2017; pp. 327–330. [Google Scholar]
- Dolk, V.; Ouden, J.D.; Steeghs, S.; Devanesan, J.G.; Chakraborty, D. Cooperative automated driving for various traffic scenarios: Experimental validation in the GCDC 2016. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1308–1321. [Google Scholar] [CrossRef]
- Qi, L. Research on intelligent transportation system technologies and applications. In Proceedings of the 2008 Workshop on Power Electronics and Intelligent Transportation System, Guangzhou, China, 2–3 August 2008; pp. 529–531. [Google Scholar]
- Guerrero-lbanez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor Technologies for Intelligent Transportation Systems. Sensors 2018, 18, 4. [Google Scholar]
- Cafiso, S.; Di Graziano, A.; Giuffre, T.; Pappalardo, G. Managed Lane as Strategy for Traffic Flow and Safety: A Case Study of Catania Ring Road. Sustainability 2022, 14, 2915. [Google Scholar] [CrossRef]
- Shladover, S.; Desoer, C.; Hedrick, J. Automated vehicle control developments in the PATH program. IEEE Trans. Veh. Technol. 1991, 40, 114–130. [Google Scholar] [CrossRef]
- Robinson, T.; Chan, E.; Coelingh, E. Operating platoons on public motorways: An introduction to the sartre platooning programme. In Proceedings of the 17th World Congress on Intelligent Transport System, Transportation Research Records, Busan, Republic of Korea, 25–29 October 2010; pp. 1–12. [Google Scholar]
- Tsugawa, S.; Kato, S. Energy ITS: Another application of vehicular communications. IEEE Commun. Mag. 2010, 48, 120–126. [Google Scholar] [CrossRef]
- Min, H.; Yang, Y.; Fang, Y.; Sun, P.; Zhao, X. Constrained optimization and distributed model predictive control-based merging strategies for adjacent connected autonomous vehicle platoons. IEEE Access 2019, 7, 163085–163096. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, Y.; Zhang, X.; Guo, N.; Wang, W. A cruise control method for connected vehicle systems considering side vehicles merging behavior. IEEE Access 2019, 7, 6922–6936. [Google Scholar] [CrossRef]
- Milanes, V.; Shladover, S.E.; Spring, J.; Nowakowski, C.; Kawazoe, H.; Nakamura, M. Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 2013, 15, 296–305. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, G.; Barth, M.J. A review on cooperative adaptive cruise control (CACC) systems: Architectures, controls, and applications. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; Volume 11, pp. 2884–2891. [Google Scholar]
- Dey, K.C.; Yan, L.; Wang, X.; Wang, Y.; Shen, H.; Chowdhury, M. A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC). IEEE Trans. Intell. Transp. Syst. 2016, 17, 491–509. [Google Scholar] [CrossRef]
- Darbha, S.; Konduri, S.; Pagilla, P.R. Benefits of V2V communication for autonomous and connected vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1954–1963. [Google Scholar] [CrossRef]
- Yue, W.; Guo, G. Guaranteed cost adaptive control of nonlinear platoons with actuator delay. J. Dyn. Syst. Meas. Control 2012, 134, 051012. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.E.; Li, K.; Borrelli, F.; Hedrick, J.K. Distributed Model Predictive Control for Heterogeneous Vehicle Platoons Under Unidirectional Topologies. IEEE Trans. Control Syst. Technol. 2016, 25, 899–910. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, Y.; Li, S.E.; Cao, Z.; Liu, H.X.; Li, L. String stability for vehicular platoon control: Definitions and analysis methods. In Proceedings of the IEEE International Symposium on Intelligent Control, Seoul, Republic of Korea, 28 June–1 July 2015; IEEE: Manhattan, NY, USA, 2015; pp. 286–291. [Google Scholar]
- Rajamani, R.; Tan, H.S.; Law, B.K.; Zhang, W.B. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans. Control Syst. Technol. 2000, 8, 695–708. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Li, K.; He, X.; Peeta, S.; Wang, Y. Consensus-based cooperative control for multi-platoon under the connected vehicles environment. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2220–2229. [Google Scholar] [CrossRef]
- Lim, E.H.M.; Hedrick, J.K. Lateral and longitudinal vehicle control coupling for automated vehicle operation. In Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, USA, 2–4 June 1999; IEEE: Manhattan, NY, USA, 2002; Volume 5, pp. 3676–3680. [Google Scholar]
- Lim, W.; Lee, S.; Sunwoo, M.; Jo, K. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans. Intell. Transp. Syst. 2018, 19, 13–626. [Google Scholar] [CrossRef]
- Moghadam, M.; Alizadeh, A.; Tekin, E.; Elkaim, G.H. An end-to-end deep reinforcement learning approach for the long-term short-term planning on the frenet space. In Proceedings of the IEEE 17th International Conference Automation Science Engineering, Lyon, France, 23–27 August 2021; pp. 1745–1750. [Google Scholar]
- Cowlagi, R.V.; Tsiotras, P. Hierarchical motion planning with kinodynamic feasibility guarantees: Local trajectory planning via model predictive control. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4003–4008. [Google Scholar]
- Howard, T.M.; Kelly, A. Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 2007, 26, 141–166. [Google Scholar] [CrossRef]
- Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal trajectory generation for dynamic street scenarios in a frenet frame. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 987–993. [Google Scholar]
- Wang, S.J.; Chen, J.Y. Motion planning of autonomous vehicle based on Frenet coordinate system. Movable Power Stn. Veh. 2019, 8, 22–29. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Ma, J.; Liu, K.; Gong, J. Path tracking for intelligent vehicles based on Frenet coordinates and delayed control. Acta Armamentarii 2019, 40, 2336–2351. [Google Scholar]
- Saska, M.; Spurny, V.; Vonásek, V. Predictive control and stabilization of nonholonomic formations with integrated spline-path planning. Robot. Auton. Syst. 2016, 75, 379–397. [Google Scholar] [CrossRef]
- Barfoot, T.D.; Clark, C.M. Motion planning for formations of mobile robots. Robot. Auton. Syst. 2004, 46, 65–78. [Google Scholar] [CrossRef]
- Zhu, Y.; He, H.; Zhao, D. LMI-based synthesis of string-stable controller for cooperative adaptive cruise control. IEEE Trans. Intell. Transp. Syst. 2019, 21, 4516–4525. [Google Scholar] [CrossRef]
- Mu, M.; Zhang, J.; Wang, C.; Zhang, J.; Yang, C. String Stability and Platoon Safety Analysis of a New Car-following Model Considering a Stabilization Strategy. IEEE Access 2021, 9, 111336–111345. [Google Scholar] [CrossRef]
- Qin, W.B.; Orosz, G. Experimental validation of string stability for connected vehicles subject to information delay. IEEE Trans. Control Syst. Technol. 2020, 28, 1203–1217. [Google Scholar] [CrossRef]
- Hung, Y.; Zhang, K. Impact of Cooperative Adaptive Cruise Control on Traffic Stability. Transp. Res. Rec. 2022, 2676, 226–241. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, Y.; Zhong, H.; Zuo, H.; Zhang, Q. Stability and Safety of Cooperative Adaptive Cruise Control Vehicular Platoon under Diverse Information Flow Topologies. Wirel. Commun. Mob. Comput. 2022, 18, 4534692. [Google Scholar] [CrossRef]
- Tian, B.; Deng, X.; Xu, Z.; Zhang, Y.; Zhao, X. Modeling and numerical analysis on communication delay boundary for CACC string stability. IEEE Access 2019, 7, 168870–168884. [Google Scholar] [CrossRef]
- Ge, J.I.; Orosz, G. Optimal control of connected vehicle systems with communication delay and driver reaction time. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2056–2070. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, K. Real-Time Distributed Cooperative Adaptive Cruise Control Model Considering Time Delays and Actuator Lag. Transp. Res. Rec. 2022, 2676, 93–111. [Google Scholar] [CrossRef]
- Acciani, F.; Frasca, P.; Heijenk, G.; Stoorvogel, A.A. Stochastic String Stability of Vehicle Platoons via Cooperative Adaptive Cruise Control With Lossy Communication. IEEE Trans. Intell. Transp. Syst. 2022, 23, 10912–10922. [Google Scholar] [CrossRef]
- Al-Jhayyish, A.; Schmidt, K.W. Feedforward strategies for cooperative adaptive cruise control in heterogeneous vehicle strings. IEEE Trans. Intell. Transp. Syst. 2018, 19, 113–122. [Google Scholar] [CrossRef]
- Navas, F.; Milanes, V.; Flores, C.; Nashashibi, F. Multi-Model Adaptive Control for CACC Applications. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1206–1216. [Google Scholar] [CrossRef]
- Bernardo, M.D.; Salvi, A.; Santini, S. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 2015, 16, 102–112. [Google Scholar] [CrossRef]
- Nie, G.; Xie, B.; Hao, Z.; Hu, H.; Tian, Y. A distributed model predictive control approach to cooperative adaptive cruise control of the heterogeneous platoon. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 236, 3153–3167. [Google Scholar] [CrossRef]
- Vanderwerf, J.; Shladover, S.; Kourjanskaia, N. Modeling Effects of Driver Control Assistance Systems on Traffic. Transp. Res. Rec. 2001, 1748, 167–174. [Google Scholar] [CrossRef]
- Ploeg, J.; Scheepers, B.T.M.; van Nunen, E.; van de Wouw, N.; Nijmeijer, H. Design and Experimental Evaluation of Cooperative Adaptive Cruise Control. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; IEEE: Manhattan, NY, USA, 2011; pp. 260–265. [Google Scholar]
- Sawant, J.; Chaskar, U.; Ginoya, D. Robust Control of Cooperative Adaptive Cruise Control in the Absence of Information about Preceding Vehicle Acceleration. IEEE Trans. Intell. Transp. Syst. 2022, 22, 5589–5598. [Google Scholar] [CrossRef]
- Fabrizio, D.R.; Alberto, P.; Jeroen, P. Sliding Mode Acceleration Estimation For Safe Vehicular Cooperative Adaptive Cruise Control. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022. [Google Scholar]
- Zhang, Y.; Bai, Y.; Wang, M.; Hu, J. Cooperative Adaptive Cruise Control With Robustness Against Communication Delay: An Approach in the Space Domain. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5496–5507. [Google Scholar] [CrossRef]
- Nunen, E.V.; Reinders, J.; Semsar-Kazerooni, E.; Nathan, V. String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons. IEEE Trans. Intell. Veh. 2019, 4, 186–196. [Google Scholar] [CrossRef]
- Lin, Y.; Nguyen, H. Adaptive Neuro-Fuzzy Predictor-Based control for Cooperative Adaptive Cruise Control System. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1054–1063. [Google Scholar] [CrossRef]
- Bayuwindra, A.; Ploeg, J.; Lefeber, E.; Nijmeijer, H. Combined longitudinal and lateral control of car-like vehicle platooning with extended look-ahead. IEEE Trans. Control Syst. Technol. 2019, 28, 790–803. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, R.; Ye, Q.; Wei, Z.; Yan, B. Investigation of intelligent vehicle path tracking based on longitudinal and lateral coordinated control. IEEE Access 2020, 8, 105031–105046. [Google Scholar] [CrossRef]
- Kianfar, R.; Ali, M.; Falcone, P.; Fredriksson, J. Combined longitudinal and lateral control design for string stable vehicle platooning within a designated lane. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014. [Google Scholar]
- Yu, L.; Yan, X.; Kuang, Z. Driverless bus path tracking based on fuzzy pure pursuit control with a front axle reference. Appl. Sci. 2019, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- You, F.; Guang, G.U. Collaborative lane changing trajectory planning of autonomous vehicles. Sci. Technol. Eng. 2018, 18, 155–161. [Google Scholar]
Parameter | Value |
---|---|
wheel base () | 1.5 m |
initial position (Leader) | m |
initial orientation (Leader) | 0 rad |
initial position (Follower 1) | m |
initial orientation (Follower 1) | 0 rad |
initial position (Follower 2) | m |
initial orientation (Follower 2) | 0 rad |
initial position (Follower 3) | m |
initial orientation (Follower 3) | 0 rad |
initial position (Follower 4) | m |
initial orientation (Follower4) | 0 rad |
initial velocity (Leader) | 15 m/s |
longitudinal control parameters () | 2.8 |
longitudinal control parameters () | 1.2 |
longitudinal control parameters () | 2 |
lateral control parameters () | 8 |
lateral control parameters () | 1 |
Scene | ||||
---|---|---|---|---|
Lane Changing | 15 | 7.2 | 7.58 | 0.0018 |
20 | 6.54 | 7.72 | 0.0018 | |
Turning | 15 | 4.02 | 4.74 | 0.0815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, P.; Jiang, H.; Xu, X. Research on a Cooperative Adaptive Cruise Control (CACC) Algorithm Based on Frenet Frame with Lateral and Longitudinal Directions. Sensors 2023, 23, 1888. https://doi.org/10.3390/s23041888
Ren P, Jiang H, Xu X. Research on a Cooperative Adaptive Cruise Control (CACC) Algorithm Based on Frenet Frame with Lateral and Longitudinal Directions. Sensors. 2023; 23(4):1888. https://doi.org/10.3390/s23041888
Chicago/Turabian StyleRen, Pingli, Haobin Jiang, and Xian Xu. 2023. "Research on a Cooperative Adaptive Cruise Control (CACC) Algorithm Based on Frenet Frame with Lateral and Longitudinal Directions" Sensors 23, no. 4: 1888. https://doi.org/10.3390/s23041888
APA StyleRen, P., Jiang, H., & Xu, X. (2023). Research on a Cooperative Adaptive Cruise Control (CACC) Algorithm Based on Frenet Frame with Lateral and Longitudinal Directions. Sensors, 23(4), 1888. https://doi.org/10.3390/s23041888