Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip
Abstract
:1. Introduction
2. Mixed-Signal Processing of Convolutional Neural Network
2.1. Architecture of Analog Convolutional Operator
2.2. Multi-Channel Analog Convolutional Operator Unit
3. Circuit Design of Analog Convolutional Operator
3.1. Analog Multiply-and-Accumulate Circuit
3.1.1. Multiplier Circuit Design for Compactness
3.1.2. Simulation Results for the Multiplier
3.1.3. Accumulator Circuit Design
3.1.4. Accumulator Circuit for Negative Values
3.2. Analog Max-Pooling Circuit
3.3. Analog-to-Digital Converter
4. Implementation of Analog CNN Processing Chip
4.1. Operation of On-Chip Digital Controller
4.2. Fabrication of ACU Chip
4.3. Simulation Results of ACU Chip
4.4. Architecture of Mixed-Signal CNN Processing Chip
4.5. Example Implementation of Mixed-Signal CNN Processing Chip
5. Performance Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kankanhalli, A.; Charalabidis, Y.; Mellouli, S. IoT and AI for smart government: A research agenda. Gov. Inf. Q. 2019, 36, 304–309. [Google Scholar] [CrossRef]
- Gupta, S. Neuromorphic Hardware: Trying to Put Brain into Chips. 30 June 2019. Available online: https://towardsdatascience.com/neuromorphic-hardware-trying-to-put-brain-into-chips-222132f7e4de (accessed on 6 February 2023).
- Kim, H.; Hwang, S.; Park, J.; Yun, S.; Lee, J.-H.; Park, B.-G. Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition with Noisy Images. IEEE Electron Device Lett. 2018, 39, 630–633. [Google Scholar] [CrossRef]
- Tang, H.; Kim, H.; Kim, H.; Park, J. Spike Counts Based Low Complexity SNN Architecture with Binary Synapse. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.K.; Kumar, R.; Sumbul, H.E.; Knag, P.C.; Krishnamurthy, R.K. A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network with On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 2019, 54, 992–1002. [Google Scholar] [CrossRef]
- Asghar, M.S.; Arslan, S.; Al-Hamid, A.A.; Kim, H. A Compact and Low-Power SoC Design for Spiking Neural Network Based on Current Multiplier Charge Injector Synapse. Sensors 2023, 23, 6275. [Google Scholar] [CrossRef]
- Bachtiar, Y.A.; Adiono, T. Convolutional Neural Network and Maxpooling Architecture on Zynq SoC FPGA. In Proceedings of the International Symposium on Electronics and Smart Devices (ISESD), Badung-Bali, Indonesia, 8–9 October 2019; pp. 1–5. [Google Scholar]
- Sabogal, S.; George, A.; Crum, G. ReCoN: A Reconfigurable CNN Acceleration Framework for Hybrid Semantic Segmentation on Hybrid SoCs for Space Applications. In Proceedings of the IEEE Space Computing Conference (SCC), Pasadena, CA, USA, 30 July–1 August 2019; pp. 41–52. [Google Scholar]
- Halawani, Y.; Mohammad, B.; Abu Lebdeh, M.; Al-Qutayri, M.; Al-Sarawi, S.F. ReRAM-Based In-Memory Computing for Search Engine and Neural Network Applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 388–397. [Google Scholar] [CrossRef]
- Park, S.-S.; Chung, K.-S. CENNA: Cost-Effective Neural Network Accelerator. Electronics 2020, 9, 134. [Google Scholar] [CrossRef]
- Kwon, H.; Samajdar, A.; Krishna, T. MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Interconnects. SIGPLAN Not. 2018, 53, 461–475. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Y.; Yang, Z.; Tang, X.; Ye, T.T. Analog Implementation of Reconfigurable Convolutional Neural Network Kernels. In Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 11–14 November 2019; pp. 265–268. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Son, Y.; Kim, S.Y. Design of an Always-On Image Sensor Using an Analog Lightweight Convolutional Neural Network. Sensors 2020, 20, 3101. [Google Scholar] [CrossRef] [PubMed]
- Lou, Q.; Pan, C.; McGuinness, J.; Horvath, A.; Naeemi, A.; Niemier, M.; Hu, X.S. A Mixed Signal Architecture for Convolutional Neural Networks. ACM J. Emerg. Technol. Comput. Syst. 2019, 15, 19. [Google Scholar] [CrossRef]
- Wong, M.Z.; Guillard, B.; Murai, R.; Saeedi, S.; Kelly, P.H.J. AnalogNet: Convolutional Neural Network Inference on Analog Focal Plane Sensor Processors. arXiv 2020, arXiv:2006.01765. Available online: http://arxiv.org/abs/2006.01765 (accessed on 8 November 2020).
- Asghar, M.S.; Shah, S.A.A.; Kim, H. A Low Power Mixed Signal Convolutional Neural Network for Deep Learning SoC. IDEC J. Integr. Circuits Syst. 2023, 9, 7–12. [Google Scholar]
- Lee, J.; Asghar, M.S.; Kim, H. Low power 12-bit SAR ADC for Analog Convolutional Kernel of Mixed-Signal CNN Accelerator. CMC-Comput. Mater. Contin. (CMC) 2023, 75, 4357–4375. [Google Scholar] [CrossRef]
- Kazemi Nia, S.; Khoei, A.; Hadidi, K. High Speed High Precision Voltage-Mode MAX and MIN Circuits. J. Circuits Syst. Comput. (JCSC) 2007, 16, 233–244. [Google Scholar]
- Soleimani, M.; Khoei, A.; Hadidi, K.; Nia, S.K. Design of high-speed high-precision voltage-mode MAX-MIN circuits with low area and low power consumption. In Proceedings of the 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 351–354. [Google Scholar] [CrossRef]
- Son, H.; Al-Hamid, A.A.; Na, Y.; Lee, D.; Kim, H. Cnn accelerator using proposed diagonal cyclic array for minimizing memory accesses. Comput. Mater. Contin. 2023, 76, 1665–1687. [Google Scholar] [CrossRef]
- Åleskog, C.; Grahn, H.; Borg, A. Recent Developments in Low-Power AI Accelerators: A Survey. Algorithms 2022, 15, 419. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, C.; Kim, K.; Yoo, H.-J. An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile Devices. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, B.; Saikia, J.; Meng, J.; Wang, D.; Kwon, S.; Myung, S.; Kim, H.; Kim, S.J.; Seo, J.-S.; Seok, M. A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–2. [Google Scholar] [CrossRef]
Parameter | Digital NPU [20] | Analog Convolutional Operator Unit | |||
---|---|---|---|---|---|
288 MAC PEs | 27 MAC PEs | 27 MAC Units | ADC | Total | |
Area | 3.84 mm2 | 0.384 mm2 | 0.056 mm2 | 0.0046 mm2 | 0.0559 mm2 |
Power | 21 mW | 1.96 mW | 534 μW | 6.6 μW | 540.6 μW |
Energy | 2895.9 μJ | 321.72 μJ | 25.8 μJ | 0.31 μJ | 26.19 μJ |
Parameter | [14] | [22] | [13] | [23] | This Work |
---|---|---|---|---|---|
CMOS Technology (nm) | 32 | 65 | 110 | 28 | 55 |
Target Neural Network | CNN | CNN | CNN | CNN | CNN |
Weight Resolution | 4 | 4 | - | 4 | 9 |
Clock Speed (MHz) | - | 100 | 0.398 3 | 151 | 200 |
No. of Computing Units | 1024 | 64 | 180 | 32 | 27 |
Area of 1 Computing Unit (μm2) | - | 99,000 | 4250 | 943.921 | 375 |
Power of 1 Computing Unit (μW) | 10 | 18.75 | 1.46 | - | 1.44 |
ADC Resolution | 7-bit SAR | - | 4-bit single slope | 6-bit SAR | 12-Bit SAR |
Test Chip Area (mm2) | - | 15.84 | 7.65 2 | 0.031 | 0.0559 |
Power Consumption (mW) | - | 0.6198 | 0.96 | 0.316 | 0.5406 |
Computation Speed (GOPS) | 251 | 5.61 | 0.071 | 56 | 5.4 |
Computation Density (GOPS/mm2) | - | 0.815 | 0.0092 | 1806 | 96 |
Power Efficiency (GOPS/W) | - | 9060 1 | 74 | 177,000 1 | 9988 |
Energy Consumption (μJ) | 75 | 61.98 | 15.36 | - | 26.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, M.S.; Arslan, S.; Kim, H. Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip. Sensors 2023, 23, 9612. https://doi.org/10.3390/s23239612
Asghar MS, Arslan S, Kim H. Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip. Sensors. 2023; 23(23):9612. https://doi.org/10.3390/s23239612
Chicago/Turabian StyleAsghar, Malik Summair, Saad Arslan, and HyungWon Kim. 2023. "Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip" Sensors 23, no. 23: 9612. https://doi.org/10.3390/s23239612
APA StyleAsghar, M. S., Arslan, S., & Kim, H. (2023). Analog Convolutional Operator Circuit for Low-Power Mixed-Signal CNN Processing Chip. Sensors, 23(23), 9612. https://doi.org/10.3390/s23239612