A Multichannel Conflict-Free Mac Protocol for Enhancing RPMA Scalability
Abstract
:1. Introduction
2. LPWA Technologies
3. Related Work
3.1. Scalability in LPWA
3.2. Scalability in RPMA
4. RPMA Background
RPMA in the Real World
5. Mathematical Analysis
6. Simulation Analysis of RPMA
6.1. Simulation Analysis of the Original RPMA Frame
6.2. Simulation Analysis of RPMA Frame with Intentional Delay
7. The Impact of SFs Distribution on RPMA Scalability by Using Multichannel
7.1. Identifying the Coverage Range for Every SF
7.2. SFs Distribution Algorithms
Algorithm 1: SFs distribution Algorithm 1. |
Input: int Number of Nodes, Xa, Ya /*Xa and Ya represent the Access point coordinates.*/
|
Algorithm 2: SFs distribution Algorithm 2. |
Algorithm 3: SFs distribution Algorithm 3. |
7.3. Simulation Results and Analysis
7.4. Comparison with LPWA Scalability Improvement Protocols
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Diamantoulakis, P.D.; Karagiannidis, G.K. Low power wide area networks (lpwans) for internet of things (iot) applications: Research challenges and future trends. arXiv 2016, arXiv:1611.07449. [Google Scholar]
- Vailshery, L.S. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2030 (In Billions). 2020. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 15 November 2021).
- Gu, F.; Niu, J.; Jiang, L.; Liu, X.; Atiquzzaman, M. Survey of the low power wide area network technologies. J. Netw. Comput. Appl. 2020, 149, 102459. [Google Scholar] [CrossRef]
- Karunarathne, G.; Kulawansa, K.; Firdhous, M. Wireless communication technologies in internet of things: A critical evaluation. In Proceedings of the 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), Mon Tresor, Mauritius, 6–7 December 2018; pp. 1–5. [Google Scholar]
- GC, D.; Bouhafs, F.; Raschellà, A.; Mackay, M.; Shi, Q. Radio resource management framework for energy-efficient communications in the Internet of Things. Trans. Emerg. Telecommun. Technol. 2019, 30, e3766. [Google Scholar]
- Pullmann, J.; Macko, D. A new planning-based collision-prevention mechanism in long-range IoT networks. IEEE Internet Things J. 2019, 6, 9439–9446. [Google Scholar] [CrossRef]
- Reynders, B.; Wang, Q.; Tuset-Peiro, P.; Vilajosana, X.; Pollin, S. Improving reliability and scalability of lorawans through lightweight scheduling. IEEE Internet Things J. 2018, 5, 1830–1842. [Google Scholar] [CrossRef]
- Aggarwal, S.; Nasipuri, A. Improving Scalability of LoRaWAN Networks by Spreading Factor Distribution. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021; pp. 1–7. [Google Scholar]
- Ingenu. How Rpma Works the Making of RPMA. 2016. Available online: https://www.ingenu.com/portfolio/how-rpma-works-the-making-of-rpma/?doing_wp_cron=1700554988.9053370952606201171875 (accessed on 15 December 2021).
- Lavric, A.; Petrariu, A.I.; Popa, V. Long range sigfox communication protocol scalability analysis under large-scale, high-density conditions. IEEE Access 2019, 7, 35816–35825. [Google Scholar] [CrossRef]
- Morin, E.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the device lifetime in wireless networks for the internet of things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Alqurashi, H.; Bouabdallah, F.; Khairullah, E. SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors 2023, 23, 3732. [Google Scholar] [CrossRef] [PubMed]
- Lavric, A.; Popa, V. Performance evaluation of LoRaWAN communication scalability in large-scale wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 2018, 6730719. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of capacity and scalability of the LoRa low power wide area network technology. In Proceedings of the European Wireless 2016; 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016; pp. 1–6. [Google Scholar]
- Van den Abeele, F.; Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Scalability analysis of large-scale LoRaWAN networks in ns-3. IEEE Internet Things J. 2017, 4, 2186–2198. [Google Scholar] [CrossRef]
- Alahmadi, H.; Bouabdallah, F.; Al-Dubai, A. A New Annulus-based Distribution Algorithm for Scalable IoT-driven LoRa Networks. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Naik, N. LPWAN technologies for IoT systems: Choice between ultra narrow band and spread spectrum. In Proceedings of the 2018 IEEE International Systems Engineering Symposium (ISSE), Rome, Italy, 1–3 October 2018; pp. 1–8. [Google Scholar]
- Bembe, M.; Abu-Mahfouz, A.; Masonta, M.; Ngqondi, T. A survey on low-power wide area networks for IoT applications. Telecommun. Syst. 2019, 71, 249–274. [Google Scholar] [CrossRef]
- Chilamkurthy, N.S.; Pandey, O.J.; Ghosh, A.; Cenkeramaddi, L.R.; Dai, H.N. Low-power wide-area networks: A broad overview of its different aspects. IEEE Access 2022, 10, 81926–81959. [Google Scholar] [CrossRef]
- Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M. Low-power wide area network technologies for Internet-of-Things: A comparative review. IEEE Internet Things J. 2018, 6, 2225–2240. [Google Scholar] [CrossRef]
- Leverege. LPWAN White Paper. 2016. Available online: https://www.leverege.com/research-papers/lpwan-white-paper (accessed on 10 June 2022).
- Myers, T.J. Random Phase Multiple Access System with Meshing. U.S. Patent 7,773,664, 10 August 2010. [Google Scholar]
- Ingenu. White Paper—RPMA Technology for the Internet of Things. 2015, pp. 1–46. Available online: https://www.ingenu.com/portfolio/how-rpma-works-white-paper/ (accessed on 20 June 2023).
- Margelis, G.; Piechocki, R.; Kaleshi, D.; Thomas, P. Low throughput networks for the IoT: Lessons learned from industrial implementations. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 181–186. [Google Scholar]
- Downloads, D. Ingenu Expands Global Network, Providing IOT Connectivity to over 29 Countries, and Growing. 2017. Available online: https://www.ingenu.com/2017/02/ingenu-expands-global-network-providing-iot-connectivity-to-over-29-countries-and-growing/doing_wp_cron=1676721681.6826369762420654296875 (accessed on 20 June 2022).
- Downloads, D. Ingenu Announces Significant Expansion of Machine Network from Southeast to Southwest U.S. 2017. Available online: https://www.ingenu.com/2017/03/ingenu-announces-significant-expansion-of-machine-network-from-southeast-to-southwest-u-s/ (accessed on 12 June 2022).
- Devtel, E. Upland Global Wireless Technology Deploys Ingenu’s RPMA Network in Nigeria. 2017. Available online: https://developingtelecoms.com/tech/iot-m2m-uc/7114-upland-global-wireless-technology-deploys-ingenu-s-rpma-network-in-nigeria.html (accessed on 13 June 2022).
- Devtel, E. Datora Mobile to Launch INGENU’s RPMA Network in Brazil. 2017. Available online: https://developingtelecoms.com/tech/iot-m2m-uc/6958-datora-mobile-to-launch-ingenu-s-rpma-network-in-brazil.html (accessed on 15 June 2022).
- Nashiruddin, M.I.; Winalisa, S.; Nugraha, M.A. Random phase multiple access network for public internet of things in Batam island. In Proceedings of the 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021; pp. 311–316. [Google Scholar]
- Nashiruddin, M.I.; Sihotang, M.T.B.; Nugraha, M.A. Random phase multiple access network planning for smart city deployment in urban area. In Proceedings of the 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung, Indonesia, 23–24 November 2021; pp. 232–237. [Google Scholar]
- Purnama, A.A.F.; Nashiruddin, M.I.; Murti, M.A. Techno-Economic Analysis of Random Phase Multiple Access Planning for AMI Services in Surabaya City. In Proceedings of the 2021 2nd International Conference on ICT for Rural Development (IC-ICTRuDev), Jogjakarta, Indonesia, 27–28 October 2021; pp. 1–6. [Google Scholar]
- Goursaud, C.; Gorce, J.M. Dedicated networks for IoT: PHY/MAC state of the art and challenges. EAI Endorsed Trans. Internet Things 2015, 1, 150597. [Google Scholar] [CrossRef]
Technology | Band | Range | Modulation | Data Rate | Topology |
---|---|---|---|---|---|
Dash7 | Sub-GHz ISM band | 2 km | Narrow-band modulation schema | 167 kbps | Star or Tree |
Telensa | Sub-GHz ISM band | 2–3 km in urban 5–8 km in rural | UNB | 62.5 bps (UL) 500 bps (DL) | Star |
Weightless-W | TV whitespace | 5 km in urban | DBPSK, BPSK, QPSK | 1 kbps to 10 Mbps | Star |
Weightless-N | Sub-GHz ISM band | 5 km in urban | UNB, DBSK | 100 pbs | Star |
Weightless-G | Sub-GHz ISM band | 2 km | QPSK, GMSK | 200 bps to 100 kbps | Star |
LoRa | Sub-GHz ISM band | 15 km in urban 50 km in rural | CSS | 50 kbps | Star or Mesh |
Sigfox | Sub-GHz ISM band | 10 km in urban 50 km in rural | DBPSK, GFSK | 100 bps | Star |
Ingenu-RPMA | 2.4 GHz | 16 km | RPMA-DSSS | 78 kbps (UL) 19.5 kbps (DL) | Star |
SF | Coverage |
---|---|
SF1 | 50 km |
SF2 | 70 km |
SF3 | 100 km |
SF4 | 140 km |
SF5 | 200 km |
SFs Destrbution Algorithm | SF Selection Machanisom | 1 Channel Used | 38 Channels Used | ||||
---|---|---|---|---|---|---|---|
PER | PDR | Throughput | PER | PDR | Throughput | ||
Algorithm 1 | Fully random | 0.4464 | 0.5536 | 29.8292 | 0.4407 | 0.5593 | 30.1379 |
Algorithm 2 | Deterministic | 0.0154 | 0.9846 | 53.0487 | 0.0004 | 0.9996 | 53.8575 |
Algorithm 3 | Partly random | 0.0362 | 0.9638 | 51.9256 | 0.0010 | 0.9990 | 53.8268 |
Continued from Previous Page | ||||
---|---|---|---|---|
Ref | The Description | Technology | Achieved Results | Limitations |
[6] | A framework depending on SDN to handle the inefficient radio resource allocation in LPWA technologies. | LPWA (LoRa-Sigfox) |
|
|
[7] | Collision-prevention technique based on communication planning mechanism. | Long-range low-speed wireless IoT networks |
|
|
[13] | Time and channel allocation mechanism. | Sigfox |
|
|
[8] | MAC layer protocol to enhance LoRaWAN scalability and reliability. | LoRaWAN |
|
|
[9] | SFs allocation schema. | LoRaWAN |
|
|
[17] | SFs distribution algorithm. | LoRaWAN |
|
|
RPMA SFs distribution Algorithm 1 | Randomness SFs assignment algorithm. | RPMA |
|
|
RPMA SFs distribution Algorithm 2 | Deterministic SFs assignment algorithm. | RPMA |
|
|
RPMA SFs distribution Algorithm 3 | Partly random SFs assignment algorithm. | RPMA |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaeedi, E.A.; Bouabdallah, F. A Multichannel Conflict-Free Mac Protocol for Enhancing RPMA Scalability. Sensors 2023, 23, 9363. https://doi.org/10.3390/s23239363
Alsaeedi EA, Bouabdallah F. A Multichannel Conflict-Free Mac Protocol for Enhancing RPMA Scalability. Sensors. 2023; 23(23):9363. https://doi.org/10.3390/s23239363
Chicago/Turabian StyleAlsaeedi, Enas Ali, and Fatma Bouabdallah. 2023. "A Multichannel Conflict-Free Mac Protocol for Enhancing RPMA Scalability" Sensors 23, no. 23: 9363. https://doi.org/10.3390/s23239363
APA StyleAlsaeedi, E. A., & Bouabdallah, F. (2023). A Multichannel Conflict-Free Mac Protocol for Enhancing RPMA Scalability. Sensors, 23(23), 9363. https://doi.org/10.3390/s23239363