Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of Theory
2.2. Experimental Setup and Procedure
2.3. Fabrication, Modeling, and Testing of Asymmetric Tapered Fiber
3. Experimental Analysis and Results
3.1. Comparison of Experimental to Theoretical η21
3.2. Comparison of Experimental to Theoretical ηdl
3.3. Comparison of Absolute Sensitivity and Summary of Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bozzola, A.; Perotto, S.; Angelis, F.D. Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: A critical review. Analyst 2017, 142, 883–898. [Google Scholar] [CrossRef]
- Steglich, P.; Rabus, D.G.; Sada, C.; Paul, M.; Weller, M.G.; Mai, C.; Mai, A. Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial. IEEE Sens. J. 2022, 22, 10089–10105. [Google Scholar] [CrossRef]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photon. 2015, 7, 168–240. [Google Scholar] [CrossRef]
- Ward, J.M.; Dhasmana, N.; Nic Chormaic, S. Hollow core, whispering gallery resonator sensors. Eur. Phys. J. Spec. Top. 2014, 223, 1917–1935. [Google Scholar] [CrossRef]
- Consani, C.; Dubois, F.; Auböck, G. Figures of merit for mid-IR evanescent-wave absorption sensors and their simulation by FEM methods. Opt. Express 2021, 29, 9723–9736. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, M.J.; Dale, E.; Rosenberger, A.T.; Bandy, D.K. Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere. Opt. Commun. 2007, 271, 124–131. [Google Scholar] [CrossRef]
- Rosenberger, A.T. Analysis of whispering-gallery microcavity-enhanced chemical absorption sensors. Opt. Express 2007, 15, 12959–12964. [Google Scholar] [CrossRef]
- Farca, G.; Shopova, S.I.; Rosenberger, A.T. Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. Opt. Express 2007, 15, 17443–17448. [Google Scholar] [CrossRef]
- Acharyya, N.; Kozyreff, G. Multiple critical couplings and sensing in a microresonator-waveguide system. Phys. Rev. Appl. 2017, 8, 034029. [Google Scholar] [CrossRef]
- Ren, H.; Zou, C.-L.; Lu, J.; Xue, L.-L.; Guo, S.; Qin, Y.; Hu, W. Highly Sensitive Intensity Detection by a Self-Interference Micro-Ring Resonator. IEEE Photonics Technol. Lett. 2016, 28, 1469–1472. [Google Scholar] [CrossRef]
- Wan, S.; Niu, R.; Ren, H.-L.; Zou, C.-L.; Guo, G.-C.; Dong, C.-H. Experimental demonstration of dissipative sensing in a self-interference microring resonator. Photon. Res. 2018, 6, 681–685. [Google Scholar] [CrossRef]
- Ren, H.; Zou, C.-L.; Lu, J.; Le, Z.; Qin, Y.; Guo, S.; Hu, W. Dissipative sensing with low detection limit in a self-interference microring resonator. J. Opt. Soc. Am. B 2019, 36, 942–951. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Jiang, X.; Bo, F.; Ruan, Y.; Tan, Y. Free-space self-interference microresonator with tunable coupling regimes. Appl. Phys. Lett. 2020, 117, 031106. [Google Scholar] [CrossRef]
- Lu, J.; Wan, S.; Dong, C.-H.; Le, Z.; Qin, Y.; Hu, Y.; Hu, W.; Zou, C.-L.; Ren, H. Experimental demonstration of multimode microresonator sensing by machine learning. IEEE Sens. J. 2021, 21, 9046–9053. [Google Scholar] [CrossRef]
- Rajagopal, S.R.; Rosenberger, A.T. Enhancement of Dissipative Sensing in a Microresonator Using Multimode Input. Sensors 2022, 22, 6613. [Google Scholar] [CrossRef]
- Murugan, G.S.; Petrovich, M.N.; Jung, Y.; Wilkinson, J.S.; Zervas, M.N. Hollow-bottle optical microresonators. Opt. Express 2011, 19, 20773–20784. [Google Scholar] [CrossRef]
- Stoian, R.-I.; Bui, K.V.; Rosenberger, A.T. Silica hollow bottle resonators for use as whispering gallery mode based chemical sensors. J. Opt. 2015, 17, 125011. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent developments in micro-structured fiber optic sensors. Fibers 2017, 5, 3. [Google Scholar] [CrossRef]
- Henry, W.M.; Love, J.D. Spot size variation in non-adiabatic single mode fiber tapers. IEE Proc. 1989, 136, 219–224. [Google Scholar]
- Love, J.D.; Henry, W.M.; Stewart, W.J.; Black, R.J.; Lacroix, S.; Gonthier, F. Tapered single-mode fibres and devices Part 1: Adiabaticity criteria. IEE Proc.-J Optoelectron. 1991, 138, 343–354. [Google Scholar] [CrossRef]
- Black, R.J.; Lacroix, S.; Gonthier, F.; Love, J.D. Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification. IEE Proc.-J Optoelectron. 1991, 138, 355–364. [Google Scholar] [CrossRef]
- Birks, T.A.; Li, Y.W. The Shape of Fiber Tapers. J. Light. Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Baker, C.; Rochette, M. A generalized heat-brush approach for precise control of the waist profile in fiber tapers. Opt. Mater. Express 2011, 1, 1065–1076. [Google Scholar] [CrossRef]
- Felipe, A.; Espindola, G.; Kalinowski, H.J.; Lima, J.A.S.; Paterno, A.S. Stepwise fabrication of arbitrary fiber optic tapers. Opt. Express 2012, 20, 19893–19904. [Google Scholar] [CrossRef]
- Orucevic, F.; Lefèvre-Seguin, V.; Hare, J. Transmittance and near-field characterization of sub-wavelength tapered optical fibers. Opt. Express 2007, 15, 13624–13629. [Google Scholar] [CrossRef]
- Frawley, M.C.; Petcu-Colan, A.; Truong, V.G.; Nic Chormaic, S. Higher order mode propagation in an optical nanofiber. Opt. Commun. 2012, 285, 4648–4654. [Google Scholar] [CrossRef]
- Ravets, S.; Hoffman, J.E.; Orozco, L.A.; Rolston, S.L.; Beadie, G.; Fatemi, F.K. A low-loss photonic silica nanofiber for higher-order modes. Opt. Express 2013, 21, 18325–18335. [Google Scholar] [CrossRef] [PubMed]
- Ravets, S.; Hoffman, J.E.; Kordell, P.R.; Wong-Campos, J.D.; Rolston, S.L.; Orozco, L.A. Intermodal energy transfer in a tapered optical fiber: Optimizing transmission. J. Opt. Soc. Am. A 2013, 30, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-H.; Yang, K.Y.; Suh, M.-G.; Vahala, K.J. Fiber taper characterization by optical backscattering reflectometry. Opt. Express 2017, 25, 22312–22327. [Google Scholar] [CrossRef]
- Rajagopal, S.R.; Sandoval, K.; Rosenberger, A.T. Multimode input for dissipative sensing enhancement in whispering-gallery microresonators. Proc. SPIE 2021, 11700, 117002T. [Google Scholar]
- Harun, S.W.; Lim, K.S.; Tio, C.K.; Dimyati, K.; Ahmad, H. Theoretical analysis and fabrication of tapered fibers. Optik 2013, 124, 538–543. [Google Scholar] [CrossRef]
- Yariv, A. Optical Electronics in Modern Communications; Oxford: New York, NY, USA, 1997. [Google Scholar]
- Fan, S.; Suh, W.; Joannopoulos, J.D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Chiba, A.; Fujiwara, H.; Hotta, J.; Takeuchi, S.; Sasaki, K. Fano resonance in a multimode tapered fiber coupled with a microspherical cavity. Appl. Phys. Lett. 2005, 86, 261106. [Google Scholar] [CrossRef]
- Ruege, A.C.; Reano, R.M. Multimode Waveguides Coupled to Single Mode Ring Resonators. J. Lightwave Technol. 2009, 27, 2035–2043. [Google Scholar] [CrossRef]
- Ruege, A.C.; Reano, R.M. Multimode waveguide-cavity sensor based on fringe visibility detection. Opt. Express 2009, 17, 4295–4305. [Google Scholar] [CrossRef]
- Ding, D.; de Dood, M.J.A.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E.; Bouwmeester, D. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator. Opt. Express 2014, 22, 6778–6790. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Wu, Y.-H. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator. Opt. Lett. 2017, 42, 2956–2959. [Google Scholar] [CrossRef]
- Ghasemi, P.; Yam, S.S.-H. Analytical and experimental study on a bent abrupt taper. Opt. Express 2021, 29, 82–94. [Google Scholar] [CrossRef]
Taper Profile | p1 (mm) | p2 (mm) | L (mm) | rw (µm) | zb (µm) |
---|---|---|---|---|---|
1 | 27.64 | 3.12 | 4.75 | 1.16 | 12.98 |
2 | 26.35 | 3.35 | 4.78 | 1.47 | 20.08 |
3 | 28.20 | 3.45 | 4.74 | 1.16 | 12.76 |
Taper Profile | f | Enhancement η21 | Enhancement ηdl | Comparison of Absolute Sensitivity | |||
---|---|---|---|---|---|---|---|
Theory | Expt | Theory | Expt | Q2 | (Q1i)min | ||
1 | 0.062 | 2135 ± 132 | 2616 ± 945 | 114.3 ± 6.5 | 97 ± 46 | 1.43 ×107 | 1.64 × 109 |
1 | 0.070 | 5548 ± 500 | 4286 ± 1467 | 149 ± 11 | 171 ± 71 | 1.29 × 107 | 1.92 × 109 |
1 | 0.052 | 1398 ± 62 | 2258 ± 931 | 45 ± 1 | 49 ± 12 | 1.62 × 107 | 7.3 × 108 |
2 | 0.110 | 1020 ± 38 | 956 ± 240 | 54.8 ± 1.5 | 43.1 ± 30.1 | 9.0 × 106 | 4.9 × 108 |
2 | 0.128 | 639 ± 19 | 735 ± 159 | 44.9 ± 1.0 | 43.4 ± 36.0 | 1.15 × 107 | 5.2 × 108 |
2 | 0.156 | 729 ± 23 | 886 ± 247 | 43.5 ± 0.9 | 45 ± 36 | 8.5 × 106 | 3.7 × 108 |
3 | 0.077 | 1166 ± 47 | 1094 ± 331 | 62.5 ± 2.0 | 76.6 ± 52.6 | 1.1 × 107 | 6.96 × 108 |
3 | 0.053 | 509 ± 33.4 | 545 ± 151 | 38 ± 1 | 37 ± 13 | 2.5 × 107 | 9.5 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagopal, S.R.; Ke, L.; Sandoval, K.; Rosenberger, A.T. Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input. Sensors 2023, 23, 8700. https://doi.org/10.3390/s23218700
Rajagopal SR, Ke L, Sandoval K, Rosenberger AT. Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input. Sensors. 2023; 23(21):8700. https://doi.org/10.3390/s23218700
Chicago/Turabian StyleRajagopal, Sreekul Raj, Limu Ke, Karleyda Sandoval, and Albert T. Rosenberger. 2023. "Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input" Sensors 23, no. 21: 8700. https://doi.org/10.3390/s23218700
APA StyleRajagopal, S. R., Ke, L., Sandoval, K., & Rosenberger, A. T. (2023). Confirmation of Dissipative Sensing Enhancement in a Microresonator Using Multimode Input. Sensors, 23(21), 8700. https://doi.org/10.3390/s23218700