Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest—A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
- sEMG activity: any presence of muscle activity during a recording, irrespective of the amount of upper limb (UL) acceleration recorded by the probe—i.e., with the patient at rest, during passive mobilization, during posture changes (e.g., from supine to sitting), and also during nursing or physiotherapy activities.
- IMA: the presence of muscle activity without any UL acceleration, with the patient at rest.
- Motion Artifact (MoA): any signal variation due to a skin-electrode interface change, e.g., during patient handling and physiotherapy treatments.
- EMIs: interferences generated by motors and pumps positioned close to the patient, by capacitive couplings during patient handling, or due to loss of adhesion in one or both electrodes.
2.3. Protocol and Data Acquisition Procedures
2.4. Patient Characteristics
2.5. Size Design for Sensitivity and Specificity Assessment
2.6. Index Test
- number of EMI-related harmonics ≥ 5, in the frequency domain;
- epoch peak-to-peak amplitude range > 2000 mV, in the time domain;
- epoch peak-to-peak amplitude range < 50 μV, in the time domain;
- epoch minimum spectral peak frequency < 25 Hz, in the frequency domain;
- epoch minimum spectral mean frequency < 30 Hz, in the frequency domain.
2.7. Reference Standard
2.8. Statistical Analysis
2.9. Study Reporting
3. Results
3.1. Accuracy at the Single-Subject Level
3.2. Level of Agreement between Assessors
4. Discussion
Limitations and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gracies, J.M. Pathophysiology of Spastic Paresis. I: Paresis and Soft Tissue Changes. Muscle Nerve 2005, 31, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M. Pathophysiology of Spastic Paresis. II: Emergence of Muscle Overactivity. Muscle Nerve 2005, 31, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Marinelli, L.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Currà, A. “Spastic Dystonia” or “Inability to Voluntary Silence EMG Activity”? Time for Clarifying the Nomenclature. Clin. Neurophysiol. 2019, 130, 1076–1077. [Google Scholar] [CrossRef] [PubMed]
- Roche, N.; Bonnyaud, C.; Reynaud, V.; Bensmail, D.; Pradon, D.; Esquenazi, A. Motion Analysis for the Evaluation of Muscle Overactivity: A Point of View. Ann. Phys. Rehabil. Med. 2019, 62, 442–452. [Google Scholar] [CrossRef]
- Campanini, I.; Cosma, M.; Manca, M.; Merlo, A. Added Value of Dynamic EMG in the Assessment of the Equinus and the Equinovarus Foot Deviation in Stroke Patients and Barriers Limiting Its Usage. Front. Neurol. 2020, 11, 583399. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; Campanini, I. Applications In Movement And Gait Analysis. In Surface Electromyography. Physiology, Engineering, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 440–459. ISBN 9781118987025. [Google Scholar]
- Campanini, I.; Merlo, A.; Damiano, B. A Method to Differentiate the Causes of Stiff-Knee Gait in Stroke Patients. Gait Posture 2013, 38, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; Campanini, I. Impact of Instrumental Analysis of Stiff Knee Gait on Treatment Appropriateness and Associated Costs in Stroke Patients. Gait Posture 2019, 72, 195–201. [Google Scholar] [CrossRef]
- Bar-On, L.; Aertbeliën, E.; Molenaers, G.; Bruyninckx, H.; Monari, D.; Jaspers, E.; Cazaerck, A.; Desloovere, K. Comprehensive Quantification of the Spastic Catch in Children with Cerebral Palsy. Res. Dev. Disabil. 2013, 34, 386–396. [Google Scholar] [CrossRef]
- Merlo, A.; Montecchi, M.G.; Lombardi, F.; Vata, X.; Musi, A.; Lusuardi, M.; Merletti, R.; Campanini, I. Monitoring Involuntary Muscle Activity in Acute Patients with Upper Motor Neuron Lesion by Wearable Sensors: A Feasibility Study. Sensors 2021, 21, 3120. [Google Scholar] [CrossRef]
- Trompetto, C.; Currà, A.; Puce, L.; Mori, L.; Serrati, C.; Fattapposta, F.; Abbruzzese, G.; Marinelli, L. Spastic Dystonia in Stroke Subjects: Prevalence and Features of the Neglected Phenomenon of the Upper Motor Neuron Syndrome. Clin. Neurophysiol. 2019, 130, 521–527. [Google Scholar] [CrossRef]
- Campanini, I.; Merlo, A.; Farina, D. Motor Unit Discharge Pattern and Conduction Velocity in Patients with Upper Motor Neuron Syndrome. J. Electromyogr. Kinesiol. 2009, 19, 22–29. [Google Scholar] [CrossRef]
- Hermens, H.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hagg, G. European Recommendations for Surface Electromyography. Volume 8 SENIAM Collection; RRD Publisher: Chicago, IL, USA, 1999; ISBN 90-75452-15-2. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG Detection in Space and Time: Best Practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Sample Size Estimation in Diagnostic Test Studies of Biomedical Informatics. J. Biomed. Inform. 2014, 48, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurter, L.; Fairclough, S.J.; Knowles, Z.R.; Porcellato, L.A.; Cooper-Ryan, A.M.; Boddy, L.M. Establishing Raw Acceleration Thresholds to Classify Sedentary and Stationary Behaviour in Children. Children 2018, 5, 172. [Google Scholar] [CrossRef] [Green Version]
- Merlo, A. Mean Cycle Computation: A Novel Method Robust to Errors in the Detection of Foot Contact and Foot off Events. Gait Posture 2009, 30, S73–S74. [Google Scholar] [CrossRef]
- Merlo, A.; Campanini, I. Counter Reply: Impact of Instrumental Analysis of Stiff Knee Gait on Treatment Appropriateness and Associated Costs in Stroke Patients. Gait Posture 2021, 83, 230–231. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol. 2020, 2, 11–934. [Google Scholar] [CrossRef]
- Merletti, R.; Farina, D.; Gazzoni, M.; Merlo, A.; Ossola, P.; Rainoldi, A. Surface electromyography: A window on the muscle, a glimpse on the central nervous system. Eur. Med. Phys. 2001, 37, 57–68. [Google Scholar]
- Campanini, I.; Damiano, B.; Merlo, A. Lacking Foot Dorsiflexion during Swing after Stroke. Paresis, Spasticity or Muscle Shortening? Gait Posture 2016, 74, 6. [Google Scholar] [CrossRef]
- Merlo, A.; Bò, M.C.; Campanini, I. Electrode Size and Placement for Surface Emg Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. Sensors 2021, 21, 7322. [Google Scholar] [CrossRef] [PubMed]
- Campanini, I.; Merlo, A.; Disselhorst-Klug, C.; Mesin, L.; Muceli, S.; Merletti, R. Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors. Sensors 2022, 22, 4150. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.W.; et al. STARD 2015 Guidelines for Reporting Diagnostic Accuracy Studies: Explanation and Elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yu, H.; Huang, Y.; Jin, H. ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure. J. Healthc. Eng. 2021, 2021, 5802722. [Google Scholar] [CrossRef]
- Haq, K.T.; Javadekar, N.; Tereshchenko, L.G. Detection and Removal of Pacing Artifacts Prior to Automated Analysis of 12-Lead ECG. Comput. Biol. Med. 2021, 133, 104396. [Google Scholar] [CrossRef] [PubMed]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. IEEE J. Biomed. Health Inform. 2018, 22, 722–732. [Google Scholar] [CrossRef]
- Chien, Y.R.; Wu, C.H.; Tsao, H.W. Automatic Sleep-Arousal Detection with Single-Lead Eeg Using Stacking Ensemble Learning. Sensors 2021, 21, 6049. [Google Scholar] [CrossRef]
- Siuly, S.; Khare, S.K.; Bajaj, V.; Wang, H.; Zhang, Y. A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2390–2400. [Google Scholar] [CrossRef]
- Armanfard, N.; Komeili, M.; Reilly, J.P.; Connolly, J.F. A Machine Learning Framework for Automatic and Continuous MMN Detection with Preliminary Results for Coma Outcome Prediction. IEEE J. Biomed. Health Inform. 2019, 23, 1794–1804. [Google Scholar] [CrossRef]
- Gärtner, L.; Spitzer, P.; Lauss, K.; Takanen, M.; Lenarz, T.; Hoth, S. Optimized SNR-Based ECAP Threshold Determination Is Comparable to the Judgement of Human Evaluators. PLoS ONE 2021, 16, e0259347. [Google Scholar] [CrossRef]
- Forman, C.R.; Svane, C.; Kruuse, C.; Gracies, J.M.; Nielsen, J.B.; Lorentzen, J. Sustained Involuntary Muscle Activity in Cerebral Palsy and Stroke: Same Symptom, Diverse Mechanisms. Brain Commun. 2019, 1, fcz037. [Google Scholar] [CrossRef] [PubMed]
- Mottram, C.J.; Wallace, C.L.; Chikando, C.N.; Rymer, W.Z. Origins of Spontaneous Firing of Motor Units in the Spastic-Paretic Biceps Brachii Muscle of Stroke Survivors. J. Neurophysiol. 2010, 104, 3168–3179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mummidisetty, C.K.; Bohórquez, J.; Thomas, C.K. Automatic Analysis of EMG during Clonus. J. Neurosci. Methods 2012, 204, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winslow, J.; Martinez, A.; Thomas, C.K. Automatic Identification and Classification of Muscle Spasms in Long-Term EMG Recordings. IEEE J. Biomed. Health Inform. 2015, 19, 464–470. [Google Scholar] [CrossRef] [PubMed]
ID | Sex | Age (Years) | Etiology | Days from Lesion | Affected Limb |
---|---|---|---|---|---|
001-B | F | 69.3 | Post-anoxic coma | 132 | R, L |
002-E | F | 53.1 | Hemorrhagic stroke | 50 | R |
003-H | F | 59.1 | Post-anoxic coma | 109 | R, L |
006-R | M | 63.4 | Hemorrhagic stroke | 18 | R |
007-U | M | 66.2 | Ischemic stroke | 53 | R |
008-X | M | 70.9 | Ischemic cerebellar stroke | 59 | R, L |
00A-3 | F | 56.4 | Hemorrhagic stroke | 28 | R |
00H-P | F | 60.8 | Hemorrhagic stroke | 120 | L |
00I-S | M | 49.4 | Ischemic stroke | 61 | L |
00J-V | M | 62.5 | Post-anoxic coma | 28 | R, L |
Gold Positive | Gold Negative | Total | |
---|---|---|---|
Tested Positive | 1158 | 345 | 1503 |
Tested Negative | 195 | 2998 | 3193 |
Total | 1353 | 3343 | 4696 |
ID | Recorded Data (Hours) | Accuracy (95%CI) |
---|---|---|
001-Br | 35.2 | 86.5% (82.8%–90.1%) |
001-Bl | 35.2 | 90.9% (87.8%–93.9%) |
002-E | 59.9 | 86.1% (82.5%–89.8%) |
003-Hr | 5.0 | 86.3% (82.9%–89.7%) |
003-Hl | 5.0 | 78.6% (74.6%–82.7%) |
006-R | 61.8 | 81.2% (76.6%–85.8%) |
007-U | 8.0 | 98.7% (97.7%–99.8%) |
008-Xr | 46.8 | 84.4% (80.4%–88.4%) |
008-Xl | 46.8 | 78.8% (74.1%–83.5%) |
00A-3 | 12.7 | 92.0% (88.8%–95.2%) |
00H-P | 30.1 | 84.4% (80.3%–88.4%) |
00I-S | 59.6 | 94.3% (91.6%–97.0%) |
00J-Vr | 11.7 | 98.6% (97.5%–99.8%) |
00J-Vl | 11.7 | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlo, A.; Campanini, I. Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest—A Validation Study. Sensors 2023, 23, 866. https://doi.org/10.3390/s23020866
Merlo A, Campanini I. Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest—A Validation Study. Sensors. 2023; 23(2):866. https://doi.org/10.3390/s23020866
Chicago/Turabian StyleMerlo, Andrea, and Isabella Campanini. 2023. "Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest—A Validation Study" Sensors 23, no. 2: 866. https://doi.org/10.3390/s23020866
APA StyleMerlo, A., & Campanini, I. (2023). Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest—A Validation Study. Sensors, 23(2), 866. https://doi.org/10.3390/s23020866