Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm
Abstract
:1. Introduction
- The WOA is introduced in a DCP-based image dehazing framework to search optimal scaling factors for the model parameters, i.e., atmospheric light and initial transmittance, with the help of a dataset with pairs of hazy and GT images. This simplifies the optimization process and is essentially different from the reported methods that optimize atmospheric light and/or transmittance. The application of WOA in this study represents an alternative way to use a metaheuristic optimization algorithm in the field of image dehazing. The benefit of the WOA will be verified in Section 4.
- A hazy image discriminator (HID) is proposed to distinguish hazy images from clear images. The HID was developed based on haze level information extracted from images. In this study, the proposed HID was used to exclude image pairs with hazy GT images. The resulting dataset was then used in the WOA to find optimal scaling factors in the IDCP. The way in which the HID distinguishes hazy images in this study is new in the field of image haze removal. The HID will be validated in Section 4.
- A hazy image clustering (HIC) scheme is presented based on haze level information. The HIC relieves the requirement for GT images in the proposed OIDCP to make real-world applications possible. Unlike the haze information, which was used implicitly in [30], the proposed HIC uses it explicitly in this study. Furthermore, unlike hazy information, which was used to segment hazy images in [31], the HIC in this paper processes the hazy image as a whole. In addition, the HIC was used to group hazy images and relieve the requirement for GT images in the IDCP/WOA. To date, no method has been reported to divide hazy images into subsets as the HIC does. The HIC will be confirmed in Section 4.
2. Review
2.1. DCP Dehazing Algorithm
- Step 1.
- Find the initial dark channel through a block-based minimum filter by
- Step 2.
- Estimate the atmospheric light by , where . Find the 0.1% pixels with the highest values in . Then trace back to the corresponding pixels in image and find the pixel with the highest intensity as the estimate of .
- Step 3.
- Calculate the normalized dark channel by
- Step 4.
- Obtain the initial transmittance by
- Step 5.
- Refine the initial transmittance by the GIF to obtain the final transmittance , where the guide image is input image ; window size ; and smoothing parameter .
- Step 6.
- Recover the scene radiance by
2.2. IDCP Dehazing Algorithm
- Step 1.
- Find the pixel-based dark channel as
- Step 2.
- Find the maximum in and its corresponding pixel in , . Then estimate the atmospheric light as , where and .
- Step 3.
- Find the normalized block-based dark channel as
- Step 4.
- Find the initial transmittance as
- Step 5.
- Obtain the final transmittance through refining by the GIF where the guide image is and the window size and smoothing parameter .
- Step 6.
- Recover the scene radiance as
2.3. Whale Optimization Algorithm
2.3.1. Encircling Prey
2.3.2. Spiral Bubble-Net Feeding Maneuver
2.3.3. Search for Prey
Algorithms 1: Pseudo-code for WOA. |
Initialize whale population of and maximum number of iterations Calculate fitness of each search agent Find initial best search agent while () for each search agent Update , , , and if () if () Update by Equation (11) else if () Randomly select from population Update by Equation (17) end if else if () Update by Equation (14) end if end for Adjust all if they are out of solution range Calculate fitness of all Update if a better is found end while return |
3. Proposed OIDCP
3.1. Motivation
3.2. OIDCP
- Step 1.
- The HIC (described in Section 3.2.1) is performed to divide into subsets. The subsets are denoted as for , where and and are the number of hazy and GT images, respectively in haze level (HL) .
- Step 2.
- For each , the HID (described in Section 3.2.2) is performed to select clear GT images from . The obtained with corresponding hazy images form a set with image pairs .
- Step 3.
- Given a percentage , hazy images are randomly chosen from , for . With their associated GT images, the selected image set is obtained, where and are the number of hazy and GT images, respectively, and .
- Step 4.
- Set is used in the IDCP/WOA to find the optimal scaling factors and . Then the averages of and ( and ) for HL are found and used in the OIDCP application stage.
3.2.1. Hazy Image Clustering
- Step 1.
- Find the block-based dark channel as
- Step 2.
- Calculate the truncated average of as
- Step 3.
- Assign to a predefined HL , for , according to , where is the number of HLs.
3.2.2. Hazy Image Discriminator
- Step 1.
- Find the block dark channel by
- Step 2.
- Calculate the truncated average of by
- Step 3.
- Check if the inequality holds, where is a user-defined threshold. If is true, then image is considered as clear. Otherwise, go to step 4.
- Step 4.
- Calculate the difference and check if the inequality holds, where and is a user-defined threshold. If is true, then image is considered as clear; otherwise, it is hazy.
3.2.3. Averages of and
4. Results and Discussion
4.1. Training Data Preparation
4.1.1. Image Pair Selection by the HID
4.1.2. Determination of and
4.2. IDCP with WOA, MMFOA, BRO, and MRFO
4.3. Effect of and on IDCP/WOA
4.4. Comparison of IDCP and Proposed OIDCP
4.5. Comparison of OIDCP, IDCP, DCP, RRO, AOD, and GCAN
4.5.1. Results for RESIDE Dataset
4.5.2. Results for O-HAZE Dataset
4.5.3. Results with KeDeMa Dataset
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-net: All-in-one dehazing network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4780–4788. [Google Scholar] [CrossRef]
- Chen, Y.; Patel, A.K.; Chen, C. Image Haze Removal by Adaptive CycleGAN. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 1122–1127. [Google Scholar] [CrossRef]
- Chen, D.; He, M.; Fan, Q.; Liao, J.; Zhang, L.; Hou, D.; Yuan, L.; Hua, G. Gated context aggregation network for image dehazing and deraining. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xiao, B.; Alrabeiah, M.; Wang, K.; Chen, J. Single Image Dehazing with a Generic Model-Agnostic Convolutional Neural Network. IEEE Signal Process. Lett. 2019, 26, 833–837. [Google Scholar] [CrossRef]
- Zhang, H.; Sindagi, V.; Patel, V.M. Joint Transmittance Estimation and Dehazing Using Deep Networks. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1975–1986. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Dong, Y.; Ren, W.; Pan, J.; Gao, C.; Sang, N.; Yang, M.H. Semi-Supervised Image Dehazing. IEEE Trans. Image Process. 2020, 29, 2766–2779. [Google Scholar] [CrossRef]
- Li, P.; Tian, J.; Tang, Y.; Wang, G.; Wu, C. Deep Retinex Network for Single Image Dehazing. IEEE Trans. Image Process. 2021, 30, 1100–1115. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Pan, J.; Xiang, X.; Tang, J. Self-Guided Image Dehazing Using Progressive Feature Fusion. IEEE Trans. Image Process. 2022, 31, 1217–1229. [Google Scholar] [CrossRef]
- Susladkar, O.; Deshmukh, G.; Nag, S.; Mantravadi, A.; Makwana, D.; Ravichandran, S.; R, S.C.T.; Chavhan, G.H.; Mohan, C.K.; Mittal, S.; et al. ClarifyNet: A High-Pass and Low-Pass Filtering Based CNN for Single Image Dehazing. J. Syst. Archit. 2022, 132, 102736. [Google Scholar] [CrossRef]
- Cai, Z.; Fan, Q.; Feris, R.; Vasconcelos, N. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. Comput. Vis. Pattern Recognit. 2016, 9908, 354–370. [Google Scholar] [CrossRef] [Green Version]
- Gandelsman, Y.; Shocher, A.; Irani, M. Double-DIP: Unsupervised image decomposition via coupled deep-image-priors. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11018–11027. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar] [CrossRef] [Green Version]
- Fattal, R. Single Image Dehazing. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Fattal, R. Dehazing Using Color-Lines. ACM Trans. Graph. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [CrossRef]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 617–624. [Google Scholar] [CrossRef]
- Kwon, O. Single Image Dehazing Based on Hidden Markov Random Field and Expectation–Maximization. Image Vis. Process. Disp. Technol. 2014, 50, 1442–1444. [Google Scholar] [CrossRef]
- Chitra, S.; Raja, M.A.I. Multioriented video scene based image dehazing using artificial bee colony optimization. In Proceedings of the International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Chen, Y.; Chiou, C.; Hsu, C. Single Image Dehazing via Optimal Transmittance Under Scene Priors. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1–14. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; Yang, R.; Zhu, K. Convex optimization for fast image dehazing. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2246–2250. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.; Paik, J.; Lee, S. Radiance–Reflectance Combined Optimization and Structure-Guided 𝓁0-Norm for Single Image Dehazing. IEEE Trans. Multimed. 2020, 22, 30–44. [Google Scholar] [CrossRef]
- Ju, M.; Ding, C.; Ren, W.; Yang, Y.; Zhang, D.; Guo, Y.J. IDE: Image Dehazing and Exposure Using an Enhanced Atmospheric Scattering Model. IEEE Trans. Image Process. 2021, 30, 2180–2192. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.Y.; Kim, S.Y.; Kang, C.H. Image Dehazing Using LiDAR Generated Grayscale Depth Prior. Sensors 2022, 22, 1199. [Google Scholar] [CrossRef]
- Agrawal, S.; Jalal, A. A Comprehensive Review on Analysis and Implementation of Recent Image Dehazing Methods. Arch. Comput. Methods Eng. 2022, 29, 4799–4850. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, C.; Deng, M.; Peng, L. A classification algorithm to distinguish image as haze or non-haze. In Proceedings of the 2011 Sixth International Conference on Image and Graphics, Hefei, China, 12–15 August 2011; pp. 286–289. [Google Scholar] [CrossRef]
- Shrivastava, S.; Thakur, R.K.; Tokas, P. Classification of hazy and non-hazy images. In Proceedings of the 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), Bhopal, India, 27–29 October 2017; pp. 148–152. [Google Scholar] [CrossRef]
- Anwar, M.I.; Khosla, A. Classification of foggy images for vision enhancement. In Proceedings of the 2015 International Conference on Signal Processing and Communication (ICSC), Noida, India, 16–18 March 2015; pp. 233–237. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, W.; Zhang, S.; Zhang, H.; Nie, Y.; Xue, Z.; Cao, X. Hierarchical Density-Aware Dehazing Network. IEEE Trans. Cybern. 2022, 52, 11187–111999. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Fan, Q.; Bao, F.; Yao, X.; Zhang, C. Single Image Numerical Iterative Dehazing Method Based on Local Physical Features. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3544–3557. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Chang, Y.-H. Improving DCP Haze Removal Scheme by Parameter Setting and Adaptive Gamma Correction. Adv. Syst. Sci. Appl. 2021, 21, 95–112. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; Vleeschouwer, C.D. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images. arXiv 2018, arXiv:1804.05101v1. [Google Scholar] [CrossRef]
- Ma, K.; Liu, W.; Wang, Z. Perceptual evaluation of single image dehazing algorithms. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3600–3604. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orujpour, M.; Feizi-Derakhshi, M.R.; Rahkar-Farshi, T. Multi-Modal Forest Optimization Algorithm. Neural Comput. Appl. 2020, 32, 6159–6173. [Google Scholar] [CrossRef]
- Farshi, T. Battle Royale Optimization Algorithm. Neural Comput. Appl. 2021, 33, 1139–1157. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Bovik, A.C. A Feature-Enriched Completely Blind Image Quality Evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeganeh, H.; Wang, Z. Objective Quality Assessment of Tone-Mapped Images. IEEE Trans. Image Process. 2013, 22, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Nafchi, H.Z.; Shahkolaei, A.; Moghaddam, R.F.; Cheriet, M. FSITM: A Feature Similarity Index for Tone-Mapped Images. IEEE Signal Process. Lett. 2015, 22, 1026–1029. [Google Scholar] [CrossRef]
Parameter | DCP | IDCP | IDCP/WOA | |
---|---|---|---|---|
(fixed) | (heuristic) | (optimized by WOA) | ||
(fixed) | (heuristic) | (optimized by WOA) | ||
GIF | guidance image | 20 0.001 | 55 0.1 | 55 0.1 |
Stage | Content | Function |
---|---|---|
1 | Dataset | Provides hazy–clear image pairs for WOA |
2 | HIC | Divides set into subsets |
3 | HID | Screens hazy GT images in |
4 | IDCP/WOA | Searches and for image pairs in |
5 | OIDCP | Uses and in application |
GT Image | Hazy Image | IDCP/WOA | IDCP |
---|---|---|---|
Haze measure | |||
0.0888 | 0.2742 | 0.3371 | |
0.0866 | 0.2742 | 0.3371 | |
0.0855 | 0.2742 | 0.3371 | |
0.0830 | 0.2721 | 0.3025 | |
0.0800 | 0.2613 | 0.2266 | |
0.0756 | 0.2461 | 0.1917 | |
0.0132 | 0.0281 | 0.1454 |
0.025 | 0.05 | 0.075 | 0.1 | Original | |
---|---|---|---|---|---|
104,440 | 113,295 | 136,570 | 166,425 | 313,950 | |
2984 | 3237 | 3902 | 4755 | 8970 | |
33.27 | 36.09 | 43.50 | 53.01 | 100 |
5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|
1 | ||||||
0.7% | 0.7% | 0.7% | 0.7% | 0.7% | 0.7% | |
2 | ||||||
22.9% | 12.4% | 7.7% | 5.3% | 4.0% | 3.1% | |
3 | ||||||
52.0% | 37.5% | 25.5% | 17.5% | 12.5% | 9.3% | |
4 | ||||||
23.4% | 34.5% | 32.4% | 27.0% | 21.4% | 16.8% | |
5 | ||||||
1.1% | 13.9% | 23.4% | 24.9% | 23.5% | 20.7% | |
6 | - | |||||
- | 1.1% | 9.2% | 16.7% | 19.3% | 19.3% | |
7 | - | - | ||||
- | - | 1.1% | 6.7% | 12.5% | 15.2% | |
8 | - | - | - | |||
- | - | - | 1.1% | 5.2% | 9.7% | |
9 | - | - | - | - | ||
- | - | - | - | 1.1% | 4.1% | |
10 | - | - | - | - | - | |
- | - | - | - | - | 1.1% |
IDCP/WOA | IDCP/MMFOA | IDCP/BRO | IDCP/MRFO | |
---|---|---|---|---|
PSNR | 28.526 | 28.270 | 27.997 | 28.209 |
SSIM | 0.9403 | 0.9398 | 0.9384 | 0.9372 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 2000 3000 4000 5000 | 30.78 30.78 30.80 30.84 | 30.39 30.39 30.39 30.47 | 28.74 28.93 28.95 28.91 | 26.25 26.21 26.35 26.36 | 23.32 23.61 23.31 23.99 | - | - | - | - | - |
6 | 2000 3000 4000 5000 | 30.71 30.66 30.62 30.79 | 30.50 30.61 30.48 30.57 | 29.64 29.68 29.75 29.71 | 27.97 27.93 27.95 27.88 | 25.76 25.78 25.93 25.84 | 23.88 24.01 23.82 23.70 | - | - | - | - |
7 | 2000 3000 4000 5000 | 30.95 30.84 30.82 30.89 | 30.64 30.60 30.50 30.55 | 30.26 30.23 29.98 29.96 | 28.95 28.92 28.77 28.96 | 27.15 27.09 27.21 27.14 | 25.54 25.46 25.35 25.48 | 23.63 23.72 23.76 23.55 | - | - | - |
8 | 2000 3000 4000 5000 | 30.82 30.82 30.82 30.71 | 30.66 30.65 30.65 30.67 | 30.16 30.26 30.26 30.31 | 29.65 29.49 29.49 29.48 | 28.14 28.08 28.08 28.13 | 26.59 26.50 26.50 26.64 | 25.25 25.16 25.26 25.24 | 23.74 23.77 23.64 24.00 | - | - |
9 | 2000 3000 4000 5000 | 30.86 30.81 30.63 30.69 | 30.82 30.73 30.71 30.61 | 30.39 30.44 30.27 30.38 | 29.91 29.81 29.87 29.81 | 29.01 29.05 28.79 28.91 | 27.59 27.59 27.51 27.58 | 26.43 26.45 26.30 26.39 | 25.25 25.16 25.26 25.24 | 23.74 23.77 23.64 24.00 | - |
10 | 2000 3000 4000 5000 | 30.56 30.57 30.53 30.82 | 30.55 30.52 30.78 30.70 | 30.58 30.52 30.78 30.70 | 29.89 29.92 30.13 30.12 | 29.59 29.48 29.50 29.60 | 28.37 28.35 28.29 28.45 | 27.30 27.28 27.44 27.31 | 26.17 26.17 26.16 26.07 | 25.29 25.30 24.93 24.85 | 23.87 23.84 23.47 23.84 |
OIDCP | IDCP | |
---|---|---|
SSIM ↑ | 0.933 (1) | 0.933 (1) |
PSNR ↑ | 26.23 (1) | 25.42 (2) |
BRISQUE ↓ | 18.03 (2) | 17.09 (1) |
ILNIQE ↓ | 20.08 (2) | 20.02 (1) |
TMQI ↑ | 0.941 (1) | 0.937 (2) |
FSITM ↑ | 0.765 (1) | 0.764 (2) |
F&T ↑ | 0.853 (1) | 0.851 (2) |
↓ | 1.286 (1) | 1.571 (2) |
OIDCP | IDCP | |||
---|---|---|---|---|
26.12 | 31.79 | 31.00 | ||
25.90 | 30.84 | 29.68 | ||
26.09 | 29.21 | 27.69 | ||
15.61 | 25.75 | 23.57 | ||
21.46 | 29.33 | 25.71 | ||
14.36 | 24.45 | 23.64 | ||
14.55 | 28.87 | 27.42 | ||
13.77 | 26.63 | 25.71 | ||
14.91 | 22.37 | 22.13 | ||
10.05 | 23.78 | 23.00 |
OIDCP | IDCP | DCP | RRO | AOD | GCAN | |
---|---|---|---|---|---|---|
SSIM ↑ | 0.933 (1) | 0.933 (1) | 0.878 (5) | 0.890 (3) | 0.886 (4) | 0.911 (2) |
PSNR ↑ | 26.23 (1) | 25.42 (2) | 18.20 (6) | 20.95 (4) | 20.63 (5) | 24.96 (3) |
BRISQUE ↓ | 18.03 (3) | 17.09 (1) | 17.73 (2) | 18.64 (4) | 20.82 (6) | 20.49 (5) |
ILNIQE ↓ | 20.08 (2) | 20.02 (1) | 20.55 (3) | 20.81 (4) | 23.87 (6) | 21.24 (5) |
TMQI ↑ | 0.941 (1) | 0.937 (2) | 0.869 (5) | 0.917 (3) | 0.906 (4) | 0.917 (3) |
FSITM ↑ | 0.765 (2) | 0.764 (3) | 0.763 (4) | 0.772 (1) | 0.735 (5) | 0.772 (1) |
F&T ↑ | 0.853 (1) | 0.851 (2) | 0.816 (5) | 0.845 (3) | 0.820 (4) | 0.845 (3) |
↓ | 1.57 (1) | 1.71 (2) | 4.28 (5) | 3.14 (3) | 4.85 (4) | 3.14 (3) |
OIDCP | IDCP | DCP | RRO | AOD | GCAN | |||
---|---|---|---|---|---|---|---|---|
OIDCP | IDCP | DCP | RRO | AOD | GCAN | |
---|---|---|---|---|---|---|
SSIM ↑ | 0.721 (1) | 0.717 (2) | 0.642 (6) | 0.695 (4) | 0.669 (5) | 0.713 (3) |
PSNR ↑ | 19.53 (1) | 19.47 (2) | 15.14 (6) | 18.56 (4) | 18.12 (5) | 19.19 (3) |
BRISQUE ↓ | 28.79 (5) | 28.02 (4) | 27.74 (3) | 16.79 (1) | 27.73 (2) | 29.91 (6) |
ILNIQE ↓ | 23.52 (3) | 22.90 (2) | 25.01 (4) | 21.88 (1) | 30.07 (5) | 23.52 (3) |
TMQI ↑ | 0.795 (2) | 0.782 (3) | 0.729 (5) | 0.807 (1) | 0.725 (6) | 0.760 (4) |
FSITM ↑ | 0.808 (1) | 0.808 (1) | 0.780 (4) | 0.802 (2) | 0.767 (5) | 0.786 (3) |
F&T ↑ | 0.801 (2) | 0.795 (3) | 0.754 (5) | 0.804 (1) | 0.746 (6) | 0.773 (4) |
↓ | 2.14 (2) | 2.43 (3) | 4.71 (5) | 2 (1) | 4.85 (6) | 3.71 (4) |
Image | OIDCP | IDCP | DCP | RRO | AOD | GCAN | ||
---|---|---|---|---|---|---|---|---|
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 |
OIDCP | IDCP | DCP | RRO | AOD | GCAN | |
---|---|---|---|---|---|---|
BRISQUE ↓ | 11.62 (2) | 12.54 (5) | 12.35 (4) | 10.95 (1) | 11.76 (3) | 19.27 (6) |
ILNIQE ↓ | 25.20 (3) | 24.64 (2) | 23.56 (1) | 25.60 (4) | 31.94 (6) | 26.29 (5) |
↓ | 2.5 (1) | 3.5 (3) | 2.5 (1) | 2.5 (2) | 4.5 (4) | 5.5 (5) |
Image | OIDCP | IDCP | DCP | RRO | AOD | GCAN | |
---|---|---|---|---|---|---|---|
1 | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-H.; Chen, Z.-Y.; Chang, Y.-H. Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm. Sensors 2023, 23, 815. https://doi.org/10.3390/s23020815
Hsieh C-H, Chen Z-Y, Chang Y-H. Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm. Sensors. 2023; 23(2):815. https://doi.org/10.3390/s23020815
Chicago/Turabian StyleHsieh, Cheng-Hsiung, Ze-Yu Chen, and Yi-Hung Chang. 2023. "Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm" Sensors 23, no. 2: 815. https://doi.org/10.3390/s23020815
APA StyleHsieh, C.-H., Chen, Z.-Y., & Chang, Y.-H. (2023). Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm. Sensors, 23(2), 815. https://doi.org/10.3390/s23020815