Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurrell, A.; Beard, P. Piezoelectric and Fibre-Optic Hydrophones. Ultrason. Transducers Mater. Des. Sens. Actuators Med. Appl. 2012, 619–676. [Google Scholar] [CrossRef]
- Parsons, J.E.; Cain, C.A.; Fowlkes, J.B. Cost-Effective Assembly of a Basic Fiber-Optic Hydrophone for Measurement of High-Amplitude Therapeutic Ultrasound Fields. J. Acoust. Soc. Am. 2006, 119, 1432. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.P.; Cole, J.H.; Bucaro, J.A.; Flax, L. Single-Mode Fiber Ultrasonic Sensor. IEEE J. Quantum Electron. 1982, 18, 680–683. [Google Scholar] [CrossRef]
- Wurster, C.; Staudenraus, J.; Eisenmenger, W. Fiber Optic Probe Hydrophone. In Proceedings of the IEEE Ultrasonics Symposium, Cannes, France, 31 October–3 November 1994; Volume 2. [Google Scholar]
- Petelin, J.; Lokar, Z.; Horvat, D.; Petkovsek, R. Localized Measurement of a Sub-Nanosecond Shockwave Pressure Rise Time. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Busch, S.; Parlitz, U. Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water. J. Acoust. Soc. Am. 1996, 100, 148–165. [Google Scholar] [CrossRef]
- Močnik, G.; Petkovšek, R.; Možina, J. Optodynamic Characterization of the Shock Waves after Laser-Induced Breakdown in Water. Opt. Express 2005, 13, 4107–4112. [Google Scholar] [CrossRef]
- Huber, P.; Debus, J.; Peschke, P.; Hahn, E.W.; Lorenz, W.J. In Vivo Detection of Ultrasonically Induced Cavitation by a Fibre-Optic Technique. Ultrasound Med. Biol. 1994, 20, 811–825. [Google Scholar] [CrossRef]
- Vogel, A.; Hentschel, W.; Holzfuss, J.; Lauterborn, W. Cavitation Bubble Dynamics and Acoustic Transient Generation in Ocular Surgery with Pulsed Neodymium:YAG Lasers. Ophthalmology 1986, 93, 1259–1269. [Google Scholar] [CrossRef]
- Lukač, M.; Olivi, G.; Constantin, M.; Lukač, N.; Jezeršek, M. Determination of Optimal Separation Times for Dual-Pulse SWEEPS Laser-Assisted Irrigation in Different Endodontic Access Cavities. Lasers Surg. Med. 2021, 53, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Brennen, C.E. Cavitation in Medicine. Interface Focus 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Thiel, M.; Nieswand, M.; Dörffel, M. Review: The Use of Shock Waves in Medicine—A Tool of the Modern OR: An Overview of Basic Physical Principles, History and Research. Minim. Invasive Ther. Allied Technol. 2000, 9, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.K. Kailash Shock Wave Treatment in Medicine. J. Biosci. 2005, 30, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Sinibaldi, G.; Occhicone, A.; Alves Pereira, F.; Caprini, D.; Marino, L.; Michelotti, F.; Casciola, C.M. Laser Induced Cavitation: Plasma Generation and Breakdown Shockwave. Phys. Fluids 2019, 31, 103302. [Google Scholar] [CrossRef]
- Muller, M.; Garen, W.; Koch, S.; Marsik, F.; Neu, W.; Saburov, E. Shock Waves and Cavitation Bubbles in Water and Isooctane Generated by Nd:YAG Laser: Experimental and Theoretical Results. In Laser-Assisted Micro-and Nanotechnologies 2003; Society of Photo Optical: Bellingham, WA, USA, 2004; pp. 275–282. [Google Scholar] [CrossRef]
- Zhong, X.; Eshraghi, J.; Vlachos, P.; Dabiri, S.; Ardekani, A.M. A Model for a Laser-Induced Cavitation Bubble. Int. J. Multiph. Flow 2020, 132, 103433. [Google Scholar] [CrossRef]
- Akhatov, I.; Lindau, O.; Topolnikov, A.; Mettin, R.; Vakhitova, N.; Lauterborn, W. Collapse and Rebound of a Laser-Induced Cavitation Bubble. Phys. Fluids 2001, 13, 2805. [Google Scholar] [CrossRef]
- Liang, X.-X.; Linz, N.; Freidank, S.; Paltauf, G.; Vogel, A. Comprehensive Analysis of Spherical Bubble Oscillations and Shock Wave Emission in Laser-Induced Cavitation. J. Fluid Mech. 2021, 940, A5. [Google Scholar] [CrossRef]
- Supponen, O.; Akimura, T.; Minami, T.; Nakajima, T.; Uehara, S.; Ohtani, K.; Kaneko, T.; Farhat, M.; Sato, T. Jetting from Cavitation Bubbles Due to Multiple Shockwaves. Appl. Phys. Lett. 2018, 113, 193703. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Wu, X.; Zhang, J.; Wang, J.; Wang, Y.; Huang, C. Dynamic Behaviors of a Laser-Induced Bubble and Transition Mechanism of Collapse Patterns in a Tube. AIP Adv. 2020, 10, 035210. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ohtani, K.; Takayama, K.; Umezu, S.; Okatsu, K. Underwater Rock Drilling by CO2 Laser. In Proceedings of the 26th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2007—Congress Proceedings, Orlando, FL, USA, 29 October–1 November 2007. [Google Scholar]
- Lakshmi, B.S.; Leela, C.; Bagchi, S.; Kiran, P.P.; Prashant, T.S.; Tewari, S.P.; Ashoka, V.S. Interferometric and Shadowgraphic Studies of Shock Wave and Cavitation Bubble Generated with Nd:YAG Nano Second Laser Pulses Induced Breakdown in Water. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 1391. [Google Scholar]
- Ward, B.; Emmony, D.C. Direct Observation of the Pressure Developed in a Liquid during Cavitation-Bubble Collapse. Appl. Phys. Lett. 1991, 59, 2228–2230. [Google Scholar] [CrossRef]
- Hupfeld, T.; Laurens, G.; Merabia, S.; Barcikowski, S.; Gökce, B.; Amans, D. Dynamics of Laser-Induced Cavitation Bubbles at a Solid-Liquid Interface in High Viscosity and High Capillary Number Regimes. J. Appl. Phys. 2020, 127, 044306. [Google Scholar] [CrossRef]
- Gregorčič, P.; Jezeršek, M.; Možina, J. Optodynamic Energy-Conversion Efficiency during an Er:YAG-Laser-Pulse Delivery into a Liquid through Different Fiber-Tip Geometries. J. Biomed. Opt. 2012, 17, 075006. [Google Scholar] [CrossRef]
- Sakka, T.; Tamura, A.; Matsumoto, A.; Fukami, K.; Nishi, N.; Thornton, B. Effects of Pulse Width on Nascent Laser-Induced Bubbles for Underwater Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. Spectrochim. 2014, 97, 94–98. [Google Scholar] [CrossRef]
- Lai, G.; Geng, S.; Zheng, H.; Yao, Z.; Zhong, Q.; Wang, F. Early Dynamics of a Laser-Induced Underwater Shock Wave. J. Fluids Eng. Trans. ASME 2022, 144, 011501. [Google Scholar] [CrossRef]
- Wilson, B.G.; Fan, Z.; Sreedasyam, R.; Botvinick, E.L.; Venugopalan, V. Single-Shot Interferometric Measurement of Cavitation Bubble Dynamics. Opt. Lett. 2021, 46, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-San-Juan, J.C.; Rodriguez-Aboytes, E.; Korneev, N.; Baldovinos-Pantaleon, O.; Chiu-Zarate, R.; Gutiérrez-Juárez, G.; Dominguez-Cruz, R.; Ramos-García, R. Cavitation Induced by Continuous Wave Lasers. In Optical Trapping and Optical Micromanipulation IV; Society of Photo Optical: Bellingham, WA, USA, 2007; Volume 6644. [Google Scholar]
- Korneev, N.; Rodríguez-Montero, P.; Durán Sánchez, M.; Ibarra Escamilla, B.; Kuzin, A.E. Thermoactivated Cavitation Induced in Water by Low Power, Continuous Wave Thulium-Doped Fiber Laser. Rev. Mex. Física 2019, 65, 185–189. [Google Scholar] [CrossRef]
- Padilla-Martinez, J.P.; Berrospe-Rodriguez, C.; Aguilar, G.; Ramirez-San-Juan, J.C.; Ramos-Garcia, R. Optic Cavitation with CW Lasers: A Review. Phys. Fluids 2014, 26, 122007. [Google Scholar] [CrossRef]
- Korneev, N.; Montero, P.R.; Ramos-García, R.; Ramirez-San-Juan, J.C.; Padilla-Martinez, J.P. Ultrasound Induced by CW Laser Cavitation Bubbles. J. Phys. Conf. Ser. 2011, 278, 012029. [Google Scholar] [CrossRef]
- Chudnovskii, V.M.; Yusupov, V.I.; Dydykin, A.V.; Nevozhai, V.I.; Kisilev, A.Y.; Zhukov, S.A.; Bagratashvili, V.N. Laser-Induced Boiling of Biological Liquids in Medical Technologies. Quantum Electron. 2017, 47, 361. [Google Scholar] [CrossRef]
- Lum, P.; Greenstein, M.; Grossman, C.; Szabo, T.L. High-Frequency Membrane Hydrophone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 536–544. [Google Scholar] [CrossRef]
- Kendir, E.; Yaltkaya, Ş. Effect of Temperature and Wavelength on the Refractive Index of Water: A Fiber-Optic Sensor Application. Indian J. Phys. 2022, 96, 1247–1252. [Google Scholar] [CrossRef]
- Kimura, K.; Takeuchi, S.; Koike, Y. Investigation of Cavitation Bubble Influence on Frequency Spectrum of Fiber Optic Probe Hydrophone Output. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, IEEE Computer Society, Las Vegas, NV, USA, 7 September 2020; Volume 2020. [Google Scholar]
- Horiba, T.; Ogasawara, T.; Takahira, H. Cavitation Inception Pressure and Bubble Cloud Formation Due to the Backscattering of High-Intensity Focused Ultrasound from a Laser-Induced Bubble. J. Acoust. Soc. Am. 2020, 147, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.; Tazibt, A.; Tidu, A.; Aillerie, M. Water Density and Polarizability Deduced from the Refractive Index Determined by Interferometric Measurements up to 250 MPa. J. Chem. Phys. 2012, 136, 124201. [Google Scholar] [CrossRef] [PubMed]
- Irvine, W.M.; Pollack, J.B. Infrared Optical Properties of Water and Ice Spheres. Icarus 1968, 8, 324–360. [Google Scholar] [CrossRef]
- Petkovsek, R.; Gregorcic, P.; Mozina, J. A Beam-Deflection Probe as a Method for Optodynamic Measurements of Cavitation Bubble Oscillations. Meas. Sci. Technol. 2007, 18, 2972. [Google Scholar] [CrossRef]
- Matsumoto, A.; Tamura, A.; Kawasaki, A.; Honda, T.; Gregorčič, P.; Nishi, N.; Amano, K.I.; Fukami, K.; Sakka, T. Comparison of the Overall Temporal Behavior of the Bubbles Produced by Short- and Long-Pulse Nanosecond Laser Ablations in Water Using a Laser-Beam-Transmission Probe. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–6. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Kim, Y.; Lee, B.H. Nanometer-Scale Vibration Measurement Using an Optical Quadrature Interferometer Based on 3 × 3 Fiber-Optic Coupler. Sensors 2020, 20, 2665. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of PH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubalic, E.; Vella, D.; Babnik, A.; Jezeršek, M. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time. Sensors 2023, 23, 771. https://doi.org/10.3390/s23020771
Zubalic E, Vella D, Babnik A, Jezeršek M. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time. Sensors. 2023; 23(2):771. https://doi.org/10.3390/s23020771
Chicago/Turabian StyleZubalic, Emil, Daniele Vella, Aleš Babnik, and Matija Jezeršek. 2023. "Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time" Sensors 23, no. 2: 771. https://doi.org/10.3390/s23020771
APA StyleZubalic, E., Vella, D., Babnik, A., & Jezeršek, M. (2023). Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time. Sensors, 23(2), 771. https://doi.org/10.3390/s23020771