On Scalability of FDD-Based Cell-Free Massive MIMO Framework
Abstract
:1. Introduction
1.1. Paper Contribution and Organization
- This paper addressed the scalability conditions linked with angle-based FDD systems and also identifies the relationship of the number of orthogonal pilots with UEs.
- A complete mathematical model for a scalable angle-based FDD cell-free system is presented while considering a dynamic and cooperative clustering technique.
- The proposed scalable angle-based FDD system is evaluated thoroughly for minimum mean squared error (MMSE) and matched filtering (MF) precoding schemes via simulations for both the uplink and downlink channels. The results demonstrate significant performance gains compared to conventional MMSE and MF schemes with respect to spectral efficiency and computational complexity.
- The scalability of the power control algorithm is also analyzed for MMSE and MF precoding schemes in an FDD cell-free framework, where a comparative analysis of two power control algorithms, that is, max–min power control, and equal power allocation, is provided. The results are presented in terms of improved spectral and energy efficiency for both the uplink and downlink channels.
1.2. Related Work
2. Cell-Free Network for Massive MIMO
3. Scalability Analysis for FDD-Based Cell-Free Massive MIMO
- computation of estimates of the wireless channel for K UEs.
- combining/beamforming computation for up/downlink.
- control signaling for fronthaul (data and feedback).
- optimization of power control.
3.1. Uplink Pilot Training and Channel Estimation
3.2. Data Transmission Phase for Downlink
3.3. Angle Based Beamforming
3.4. Data Transmission Phase for Uplink
3.5. Angle-Based Combining
4. Analysis of Spectral and Energy Efficiency
4.1. Spectral Efficiency of FDD-Based Cell-Free
4.2. Scalability Analysis of Spectral Efficiency for Uplink
4.3. Scalability Analysis of Spectral Efficiency for Downlink
4.4. Overhead of Scalable Angle Based Scheme in FDD Cell-Free
4.5. Energy Efficiency
5. Power Control Algorithm for Scalable Cell-Free
Max–Min Power Allocation for Downlink
6. Simulation Results
6.1. Simulation Setup
6.2. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, B.; Baig, S.; Asif, H.M.; Mumtaz, S.; Muhaidat, S. A Survey of FDD-Based Channel Estimation Schemes with Coordinated Multipoint. IEEE Syst. J. 2022, 16, 4563–4573. [Google Scholar] [CrossRef]
- Riviello, D.G.; Tuninato, R.; Zimaglia, E.; Fantini, R.; Garello, R. Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator. Sensors 2023, 23, 910. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.F.; Liu, Z.H.; Yao, M. Deep Learning for Joint Pilot Design and Channel Estimation in MIMO-OFDM Systems. Sensors 2022, 22, 4188. [Google Scholar] [CrossRef]
- Bjornson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 7, 4247–4261. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, A.; Mansour, M.M. Efficient Angle-Domain Processing for FDD-Based Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 4, 2188–2203. [Google Scholar] [CrossRef] [Green Version]
- Shi, E.; Zhang, J.; He, R.; Jiao, H.; Wang, Z.; Ai, B.; Ng, D.W.K. Spatially Correlated Reconfigurable Intelligent Surfaces-Aided Cell-Free Massive MIMO Systems. IEEE Trans. Veh. Technol. 2022, 71, 9073–9077. [Google Scholar] [CrossRef]
- Garg, N.; Ge, H.; Ratnarajah, T. Generalized Superimposed Training Scheme in IRS-Assisted Cell-Free Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 1157–1171. [Google Scholar] [CrossRef]
- Zaher, M.; Demir, Ö.T.; Björnson, E.; Petrova, M. Learning-Based Downlink Power Allocation in Cell-Free Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 174–188. [Google Scholar] [CrossRef]
- Elhoushy, S.; Ibrahim, M.; Hamouda, W. Cell-Free Massive MIMO: A Survey. IEEE Commun. Surv. Tutorials 2022, 24, 492–523. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Zhang, J.; Bjornson, E.; Ai, B. A survey on user-centric cell-free massive MIMO systems. Digit. Commun. Netw. 2022, 8, 695–719. [Google Scholar] [CrossRef]
- Venkatesan, S.; Lozano, A.; Valenzuela, R. Network MIMO: Overcoming Intercell Interference in Indoor Wireless Systems. In Proceedings of the 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 4–7 November 2007; pp. 83–87. [Google Scholar]
- Gesbert, D.; Hanly, S.; Huang, H.; Shitz, S.S.; Simeone, O.; Yu, W. Multi-Cell MIMO Cooperative Networks: A New Look at Interference. IEEE J. Sel. Areas Commun. 2010, 28, 1380–1408. [Google Scholar] [CrossRef] [Green Version]
- Buzzi, S.; D’Andrea, C. Cell-Free Massive MIMO: User-Centric Approach. IEEE Wirel. Commun. Lett. 2017, 6, 706–709. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Bjornson, E.; Sanguinetti, L. A New Look at Cell-Free Massive MIMO: Making It Practical With Dynamic Cooperation. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar]
- Demir, Ö.T.; Bjornson, E.; Sanguinetti, L. Foundations of user-centric cell-free massive MIMO. Found. Trends Signal Process. 2021, 14, 162–472. [Google Scholar] [CrossRef]
- Bjornson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO has unlimited capacity. IEEE Trans. Wirel. Commun. 2017, 17, 574–590. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO: Uniformly great service for everyone. In Proceedings of the IEEE SPAWC, Stockholm, Sweden, 28 June–1 July 2015; pp. 201–205. [Google Scholar]
- Bjornson, E.; Zakhour, R.; Gesbert, D.; Ottersten, B. Cooperative Multicell Precoding: Rate Region Characterization and Distributed Strategies With Instantaneous and Statistical CSI. IEEE Trans. Signal Process. 2010, 58, 4298–4310. [Google Scholar] [CrossRef] [Green Version]
- Marsch, P.; Fettweis, G. On multicell cooperative transmission in backhaul-constrained cellular systems. Ann. Telecommun. 2008, 63, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, R.; Andrews, J.G.; Ghosh, A.; Heath, R.W. Networked MIMO with clustered linear precoding. IEEE Trans. Wirel. Commun. 2009, 8, 1910–1921. [Google Scholar]
- Huang, H.; Trivellato, M.; Hottinen, A.; Shafi, M.; Smith, P.J.; Valenzuela, R. Increasing downlink cellular throughput with limited network MIMO coordination. IEEE Trans. Wirel. Commun. 2009, 8, 2983–2989. [Google Scholar] [CrossRef]
- Osseiran, A.; Monserrat, J.F.; Marsch, P. 5G Mobile and Wireless Communications Technology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Tolli, A.; Codreanu, M.; Juntti, M. Cooperative MIMO-OFDM Cellular System with Soft Handover Between Distributed Base Station Antennas. IEEE Trans. Wirel. Commun. 2008, 7, 1428–1440. [Google Scholar] [CrossRef]
- Bjornson, E.; Jalden, N.; Bengtsson, M.; Ottersten, B. Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission. IEEE Trans. Signal Process. 2011, 59, 6086–6101. [Google Scholar] [CrossRef] [Green Version]
- Kaviani, S.; Simeone, O.; Krzymien, W.; Shamai, S. Linear Precoding and Equalization for Network MIMO With Partial Cooperation. IEEE Trans. Veh. Technol. 2012, 61, 2083–2096. [Google Scholar] [CrossRef] [Green Version]
- Bjornson, E.; Jorswieck, E. Optimal Resource Allocation in Coordinated Multi-Cell Systems; Now Publishers: Delft, The Netherlands, 2013. [Google Scholar]
- Bjornson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhang, J.; Bjornson, E.; Li, Z.; Ai, B. Cell-Free Massive MIMO-OFDM for High-Speed Train Communications. IEEE J. Sel. Areas Commun. 2022, 40, 2823–2839. [Google Scholar] [CrossRef]
- Fukue, S.; Iimori, H.; De Abreu, G.; Ishibashi, K. Joint Access Configuration and Beamforming for Cell-Free Massive MIMO Systems with Dynamic TDD. IEEE Access 2022, 10, 40130–40149. [Google Scholar] [CrossRef]
- Miretti, L.; Bjornson, E.; Gesbert, D. Team MMSE Precoding With Applications to Cell-Free Massive MIMO. IEEE Trans. Wirel. Commun. 2022, 21, 6242–6255. [Google Scholar] [CrossRef]
- Kim, S.; Shim, B. FDD-Based Cell-Free Massive MIMO Systems. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Fan, J.; Liang, P.; Jiao, Z.; Han, X. A Compressive Sensing and Deep Learning-Based Time-Varying Channel Estimation for FDD Massive MIMO Systems. IEEE Trans. Veh. Technol. 2022, 71, 8729–8738. [Google Scholar] [CrossRef]
- Du, L.; Li, L.; Ngo, H.; Mai, T.; Matthaiou, M. Cell-Free Massive MIMO: Joint Maximum-Ratio and Zero-Forcing Precoder With Power Control. IEEE Trans. Commun. 2021, 69, 3741–3756. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, J.; Bjornson, E.; Chen, S.; Zhong, Z. Performance Analysis of Cell-Free Massive MIMO Over Spatially Correlated Fading Channels. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Liu, Z.; Singh, G.; Xu, C.; Vasisht, D. FIRE: Enabling Reciprocity for FDD MIMO Systems. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 25–29 October 2021; Volume 68, pp. 628–641. [Google Scholar]
- Cheng, L.; Wu, Y.-C.; Zhang, J.; Liu, L. Subspace Identification for DOA Estimation in Massive/Full-Dimension MIMO Systems: Bad Data Mitigation and Automatic Source Enumeration. IEEE Trans. Signal Process. 2015, 63, 5897–5909. [Google Scholar] [CrossRef]
- Hu, A.; Lv, T.; Gao, H.; Zhang, Z.; Yang, S. An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 996–1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Ai, B.; He, R.; Zhong, Z. Two-Dimension Direction-of-Arrival Estimation for Massive MIMO Systems. IEEE Access 2015, 3, 2122–2128. [Google Scholar] [CrossRef]
- Shafin, R.; Liu, L.; Zhang, J.; Wu, Y. DoA Estimation and Capacity Analysis for 3-D Millimeter Wave Massive-MIMO/FD-MIMO OFDM Systems. IEEE Trans. Wirel. Commun. 2016, 15, 6963–6978. [Google Scholar] [CrossRef]
- Fan, D.; Deng, Y.; Gao, F.; Liu, Y.; Wang, G.; Zhong, Z.; Nallanathan, A. Training Based DOA Estimation in Hybrid mmWave Massive MIMO Systems. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Fan, D.; Deng, Y.; Gao, F.; Liu, Y.; Wang, G.; Zhong, Z.; Nallanathan, A. Angle Domain Channel Estimation in Hybrid Millimeter Wave Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2018, 17, 8165–8179. [Google Scholar] [CrossRef]
- Va, V.; Choi, J.; Heath, R. The Impact of Beamwidth on Temporal Channel Variation in Vehicular Channels and Its Implications. IEEE Trans. Veh. Technol. 2017, 66, 5014–5029. [Google Scholar] [CrossRef]
- Han, T.; Zhao, D. Downlink channel estimation in FDD cell-free massive MIMO. Phys. Commun. 2022, 52, 101614. [Google Scholar] [CrossRef]
- Lee, K.; Choi, W. Cell-Free Massive MIMO With Rician K-Adaptive Feedback. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; pp. 276–281. [Google Scholar]
- Hugl, K.; Kalliola, K.; Laurila, J. Spatial reciprocity of uplink and downlink radio channels in FDD systems. Proc. COST 2002, 273, 066. [Google Scholar]
- Xie, H.; Gao, F.; Zhang, S.; Jin, S. A Unified Transmission Strategy for TDD/FDD Massive MIMO Systems With Spatial Basis Expansion Model. IEEE Trans. Veh. Technol. 2017, 66, 3170–3184. [Google Scholar] [CrossRef]
- Patidar, M.; Dubey, R.; Jain, N.K.; Kulpariya, S. Performance analysis of WiMAX 802.16e physical layer model. In Proceedings of the 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN), Indore, India, 20–22 September 2012; pp. 1–4. [Google Scholar]
- Patidar, M.; Bhardwaj, G.; Jain, A.; Pant, B.; Ray, D.K.; Sharma, S. An Empirical Study and Simulation Analysis of the MAC Layer Model Using the AWGN Channel on WiMAX Technology. In Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 10–12 October 2022; pp. 658–662. [Google Scholar]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency; Now Publishers: Delft, The Netherlands, 2017. [Google Scholar]
- Ngo, H.; Tran, L.-N.; Duong, T.; Matthaiou, M.; Larsson, E. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
Article | Scalable | Duplexing Mode | Precoding/ Combining | Power Allocation | Spectral Efficiency | Energy Efficiency |
---|---|---|---|---|---|---|
[4] | √ | TDD | LP-MMSE, MMSE, MR | equal power | √ | ✗ |
[5] | ✗ | FDD | Angle-based MMSE, MF, and ZF | max–min, equal power | √ | √ |
[27] | ✗ | TDD/FDD | L-MMSE | ✗ | √ | ✗ |
[28] | ✗ | NA | MR and MMSE | fractional, max–min, max-sum SE | √ | ✗ |
[29] | ✗ | TDD | fractional programming, convex–concave procedure | √ | ✗ | |
[30] | ✗ | TDD/FDD | TEAM-MMSE | ✗ | ✗ | ✗ |
[31] | ✗ | FDD | angle-based ZF | non-convex QCQP | ✗ | ✗ |
[34] | ✗ | TDD | hybrid precoding | ✗ | ✗ | ✗ |
[35] | ✗ | TDD | joint MR and ZF | max–min | √ | ✗ |
[36] | ✗ | NA | MRC | ✗ | √ | √ |
Proposed | √ | FDD | Angle-based LP-MMSE, MMSE, and MF | max–min, equal power | √ | √ |
Estimation Technique | Complexity of Estimation |
---|---|
Angle-based | |
ESPRIT | |
MUSIC |
Technique | Complexity of Channel Estimation | Complexity of Precoding/Combining |
---|---|---|
Angle-based MMSE | ( | |
Angle-based LP-MMSE | ||
Angle-based MF | - |
System Parameters | Value |
---|---|
Coverage Area | km |
Bandwidth | 100 MHz |
Up/Downlink Frequency | GHZ |
Transmit Power for Uplink Pilot | 200 mW |
Transmit Power of Payload in Uplink | 200 mW |
Transmit Power of Payload in Downlink | 1 W |
Angle Coherence Interval | 200 Samples |
Number of Monte Carlo Simulations | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, B.; Baig, S.; Aslam, S. On Scalability of FDD-Based Cell-Free Massive MIMO Framework. Sensors 2023, 23, 6991. https://doi.org/10.3390/s23156991
Hassan B, Baig S, Aslam S. On Scalability of FDD-Based Cell-Free Massive MIMO Framework. Sensors. 2023; 23(15):6991. https://doi.org/10.3390/s23156991
Chicago/Turabian StyleHassan, Beenish, Sobia Baig, and Saad Aslam. 2023. "On Scalability of FDD-Based Cell-Free Massive MIMO Framework" Sensors 23, no. 15: 6991. https://doi.org/10.3390/s23156991
APA StyleHassan, B., Baig, S., & Aslam, S. (2023). On Scalability of FDD-Based Cell-Free Massive MIMO Framework. Sensors, 23(15), 6991. https://doi.org/10.3390/s23156991