Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation
Abstract
:1. Introduction
- -
- The disturbance rejection and chattering alleviation are achieved to maintain robust performances of PWM DC-DC converters. Mainly, the two-mode tracking control “voltage/current control” had been supported based on an extended state observer;
- -
- Compensating the time delay is performed at each time sample (iteration). Additionally, the partial input saturation has been modeled as an explicit parameter in the state representation. As a required performance, the proposed approach stabilizes the behavior of the PWM DC-DC converters by satisfying the terminal constraints for the output voltage/current tracking;
- -
- At the establishment of stability and feasibility conditions, a supported assumption is given to eliminate the bilinearity form so that, to update the controller parameters at each iteration, the infinite time domain “min–max” is implemented to formulate the optimization problem as a relaxed convex optimization problem.
2. Problem Formulation and Modelling of DC-DC Converters
3. Sensorless Active Disturbance Rejection Design
- where:
- and
- where: , and
4. Robust Stability of Dynamic Sensorless Active Disturbance Rejection Control Approach
- -
- While the output constraint in Equation (13) is expressed as:
- -
- Let us recall the optimization problem represented in expression (43) that defines , and we have:
5. Simulation Results and Discussions
- -
- Case 1. PWM Buck DC-DC Converter
- -
- Comparison with Classical Robust MPC
- -
- Case 2. PWM Buck/Boost DC-DC Converter
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Dong, W.; Li, S.; Fu, X.; Li, Z.; Fairbank, M.; Gao, Y. Control of a buck DC/DC converter using approximate dynamic programming and artificial neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1760–1768. [Google Scholar] [CrossRef]
- Karppanen, M.; Suntio, T.; Sippola, M. Dynamical characterization of input-voltage-feed forward-controlled buck converter. IEEE Trans. Ind. Electron. 2007, 54, 1005–1013. [Google Scholar] [CrossRef]
- Geyer, T.; Papafotiou, G.; Frasca, R.; Morari, M. Constrained optimal control of the step-down DC-DC converter. IEEE Trans. Power Electron. 2008, 23, 2454–2464. [Google Scholar] [CrossRef]
- Sayed, K.; Gronfula, M.G.; Ziedan, H.A. Novel soft-switching integrated boost DC-DC converter for PV power system. Energies 2020, 13, 749. [Google Scholar] [CrossRef] [Green Version]
- Song, T.T.; Chung, H.S. Boundary control of boost converters using state-energy plane. IEEE Trans. Power Electron. 2008, 23, 551–563. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Palumbo, G.A. review of charge pump topologies for the power management of IoT nodes. Electronics 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Sundareswaran, K.; Sreedevi, V.T. Boost converter controller design using queen-bee-assisted GA. IEEE Trans. Ind. Electron. 2009, 56, 778–783. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Palumbo, G.; Tanzawa, T.A. Charge Loss Aware Advanced Model of Dickson Voltage Multipliers. IEEE Access 2022, 10, 118082–118092. [Google Scholar] [CrossRef]
- Yari, K.; Mojallali, H.; Shahalami, S.H. A new coupled-inductor-based buck–boost DC–DC converter for PV applications. IEEE Trans. Power Electron. 2021, 37, 687–699. [Google Scholar] [CrossRef]
- Nimitti, F.G.; Giacomini, J.C.; Andrade, A.M.S.S. Dual-Stacked Bidirectional Boost/Buck DC-DC Converter. IEEE Trans. Ind. Electron. 2022, 70, 8873–8882. [Google Scholar] [CrossRef]
- Wu, K.C. A comprehensive analysis of current-mode control for DCM buck-boost converters. IEEE Trans. Ind. Electron. 2004, 51, 733–735. [Google Scholar] [CrossRef]
- Zahaf, A.; Bououden, S.; Chadli, M.; Chemachema, M. Robust Fault Tolerant Optimal Predictive Control of Hybrid Actuators with Time-Varying Delay for Industrial Robot Arm. Asian J. Control 2022, 24, 1–15. [Google Scholar] [CrossRef]
- Bounemeur, A.; Chemachema, M.; Essounbouli, N. Indirect Adaptive Fuzzy Fault Tolerant Tracking Control for MIMO Nonlinear Systems with Actuator and Sensor Failures. ISA Trans. 2018, 79, 45–61. [Google Scholar] [CrossRef]
- Hasanpour, S.; Siwakoti, Y.P.; Mostaan, A.; Blaabjerg, F. New semiquadratic high step-up DC/DC converter for renewable energy applications. IEEE Trans. Power Electron. 2020, 36, 433–446. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Sampled memory-event-triggered fuzzy load frequency control for wind power systems subject to outliers and transmission delays. IEEE Trans. Cybern. 2022, 53, 4043–4053. [Google Scholar] [CrossRef]
- Bououden, S.; Allouani, F.; Abboudi, A.; Chadli, M.; Boulkaibet, I.; Barakeh, Z.A.; Ghandour, R. Observer-Based Robust Fault Predictive Control for Wind Turbine Time-Delay Systems with Sensor and Actuator Faults. Energies 2023, 16, 858. [Google Scholar] [CrossRef]
- Hazil, O.; Allouani, F.; Bououden, S.; Chadli, M.; Chemachema, M.; Boulkaibet, I.; Neji, B. A robust model predictive control for a photovoltaic pumping system subject to actuator saturation Nonlinearity. Sustainability 2023, 15, 4493. [Google Scholar] [CrossRef]
- Karimi, H.R.; Shi, P. H∞ Control of Markovian Switching Systems with Time-Delays: Applied to DC-DC Converters. In Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society, IECON, Melbourne, Australia, 7–10 November 2011. [Google Scholar]
- Boukas, E.K.; Benzaouia, A. Stability of Discrete-Time Linear Systems with Markovian Jumping Parameters and Constrained Control. IEEE Trans. Autom. Control 2002, 47, 516–521. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Q. Stability Analysis of Discrete-Time Semi-Markov Jump Linear Systems. IEEE Trans. Autom. Control 2020, 65, 5415–5421. [Google Scholar] [CrossRef]
- Shi, P.; Boukas, E.K.; Agarwal, K. Kalman Filtering for Continuous Time Uncertain Systems with Markovian Jumping Parameters. IEEE Trans. Autom. Control 1999, 44, 1592–1597. [Google Scholar]
- Zahaf, A.; Bououden, S.; Chadli, M.; Zelinka, I.; Boulkaibet, I. Observer Based Model Predictive Control of Hybrid Systems. In Proceedings of the International Conference on Electrical Engineering and Control Applications, Constantine, Algeria, 21–23 November 2017; Springer: Cham, Switzerland, 2017; pp. 198–207. [Google Scholar]
- Yoshimura, V.L.; Assunção, E.; da Silva, E.R.P.; Teixeira, M.C.M.; Júnior, E.I.M. Observer-Based Control Design for Switched Affine Systems and Applications to DC–DC Converters. J. Control Autom. Electr. Syst. 2013, 24, 535–543. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X.A. delay-kernel-dependent approach to saturated control of linear systems with mixed delays. Automatica 2023, 152, 110984. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Distributed-delay-dependent stabilization for networked interval type-2 fuzzy systems with stochastic delay and actuator saturation. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 3165–3175. [Google Scholar] [CrossRef]
- Zahaf, A.; Bounemeur, A.; Bououden, S.; Boulkaibet, I. Fault Diagnosis of Uncertain Hybrid Actuators Based Model Predictive Control. In Proceedings of the International Conference on Electrical Engineering and Control Applications, Constantine, Algeria, 17–19 December 2019; Springer: Singapore, 2019; pp. 961–971. [Google Scholar]
- Wang, Y.X.; Xuan, D.J.; Yu, D.H.; Kim, Y.B. Buck DC-DC Converter Design and Experimental Validation by Time Delay Control. In Proceedings of the International Automatic Control Conference (CACS), Sun Moon Lake, Taiwan, 2–4 December 2013. [Google Scholar]
- Wang, J.; Li, S.; Yang, J.; Wu, B. Extended State Observer-Based Sliding Mode Control for PWM-Based DC-DC Buck Power Converter Systems with Mismatched Disturbances. IET Control Theory Appl. 2015, 9, 579–586. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Li, S.; Yang, J.; Li, Q. Finite-time output feedback control for PWM-based DC–DC buck power converters of current sensorless mode. IEEE Trans. Control Syst. Technol. 2016, 25, 1359–1371. [Google Scholar] [CrossRef]
- He, W.; Namazi, M.M.; Li, L.; Ortega, R. A State Observer for Sensorless Control of Power Converters with Unknown Load Conductance. IEEE Trans. Power Electron. 2022, 37, 9187–9199. [Google Scholar] [CrossRef]
- Zhang, X.; Martinez-Lopez, M.; He, W.; Shang, Y.; Jiang, C.; Moreno-Valenzuela, J. Sensorless control for DC–DC boost converter via generalized parameter estimation-based observer. Appl. Sci. 2021, 11, 7761. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Q.; Wang, M.; Zhang, B.; Chen, Y. Robust speed tracking control for future electric vehicles under network-induced delay and road slope variation. Sensors 2022, 22, 1787. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Restrepo, C.; Hernández, J.C. Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach. Sensors 2021, 21, 6367. [Google Scholar] [CrossRef]
- Trinh, H.A.; Nguyen, D.G.; Phan, V.D.; Duong, T.Q.; Truong HV, A.; Choi, S.J.; Ahn, K.K. Robust Adaptive Control Strategy for a Bidirectional DC-DC Converter Based on Extremum Seeking and Sliding Mode Control. Sensors 2023, 23, 457. [Google Scholar] [CrossRef]
- He, W.; Shang, Y.; Namazi, M.M.; Ortega, R. Adaptive sensorless control for buck converter with constant power load. Control Eng. Pract. 2022, 126, 105237. [Google Scholar] [CrossRef]
- Su, M.; Feng, W.; Jiang, T.; Guo, B.; Wang, H.; Zheng, C. Disturbance observer-based sliding mode control for dynamic performance enhancement and current-sensorless of buck/boost converter. IET Power Electron. 2021, 14, 1421–1432. [Google Scholar] [CrossRef]
- Zhang, Q.; Min, R.; Tong, Q.; Zou, X.; Liu, Z.; Shen, A. Sensorless predictive current controlled DC–DC converter with a self-correction differential current observer. IEEE Trans. Ind. Electron. 2014, 61, 6747–6757. [Google Scholar] [CrossRef]
- Deng, Y.; Song, W.; Yin, S.; Zhong, M.; Yang, K.; Feng, X. A Model Predictive Control Scheme without Current Sensor of Dual Active Bridge DC-DC Converters: Improving Dynamic Performance and Reducing Hardware Cost. IEEE Trans. Transp. Electrif. 2022, 9, 2916–2928. [Google Scholar] [CrossRef]
- Kothare, M.V.; Balakrishnan, V.; Morari, M. Robust Constrained Model Predictive Control Using Linear Matrix Inequalities. Automatica 1996, 32, 1361–1379. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Patil, S.L.; Ginoya, D.; Chaskar, U.M.; Phadke, S.B. Robust control of mismatched buck DC–DC converters by PWM-based sliding mode control schemes. Control Eng. Pract. 2019, 84, 183–193. [Google Scholar] [CrossRef]
- Al-Baidhani, H.; Kazimierczuk, M.K. Simplified Nonlinear Current-Mode Control of DC-DC Cuk Converter for Low-Cost Industrial Applications. Sensors 2023, 23, 1462. [Google Scholar] [CrossRef]
Control Strategy | Used Technics | Advantages | Reference |
---|---|---|---|
Dynamic Sensorless Active Disturbances Rejection-based Predictive Control |
|
| Present Work |
| |||
|
| ||
| |||
|
| ||
| |||
Sensorless Predictive Control |
|
| [37] |
|
| ||
| |||
State Observe-based Control |
|
| [30] |
| |||
Robust PWM-based Sliding Mode Control |
|
| [40] |
|
| ||
Finite-time Output Feedback Sensorless Control |
|
| [29] |
|
| ||
|
| ||
Sensorless Control |
|
| [31] |
|
| ||
| |||
Robust Nonlinear Current-Mode Control |
|
| [41] |
|
Parameters | Description | Numerical Value |
---|---|---|
Vin | Input voltage | 25 V |
VRef | Desired voltage | 15 V–23 V |
Ilmin, Ilmax | Desired range current | 0.5 A, 3 A |
iload | External disturbance | 0.25sin(1000 t) |
R | The load resistance | 6 Ω |
L | The inductance | 98.58 mH |
Rl | Resistance of inductor | 48.5 mΩ |
C | The capacitance | 202.5 µF |
Rc | Resistance of capacitor | 0.16 mΩ |
Rm | On-state resistance of the MOSFET | 0.27 mΩ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahaf, A.; Bououden, S.; Chadli, M.; Boulkaibet, I.; Neji, B.; Khezami, N. Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation. Sensors 2023, 23, 6936. https://doi.org/10.3390/s23156936
Zahaf A, Bououden S, Chadli M, Boulkaibet I, Neji B, Khezami N. Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation. Sensors. 2023; 23(15):6936. https://doi.org/10.3390/s23156936
Chicago/Turabian StyleZahaf, Abdelmalek, Sofiane Bououden, Mohammed Chadli, Ilyes Boulkaibet, Bilel Neji, and Nadhira Khezami. 2023. "Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation" Sensors 23, no. 15: 6936. https://doi.org/10.3390/s23156936
APA StyleZahaf, A., Bououden, S., Chadli, M., Boulkaibet, I., Neji, B., & Khezami, N. (2023). Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation. Sensors, 23(15), 6936. https://doi.org/10.3390/s23156936