The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications
Abstract
:1. Introduction
2. Background and Related Work
3. Platform Design
3.1. Architecture
3.2. Communication Network Design
3.3. ML Model Design
3.4. Edge Device Design
4. Results and Discussion
4.1. ML Model Edge Device Performance
4.2. Overall Energy Consumption
4.3. Economic Impact and Scaling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Precedence Research. Internet of Things (IoT) in Agriculture Market. 2022. Available online: https://www.precedenceresearch.com/iot-in-agriculture-market (accessed on 1 July 2022).
- Mordor Intelligence. AI in Agriculture Market—Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027). 2022. Available online: https://www.mordorintelligence.com/industry-reports/ai-in-agriculture-market (accessed on 26 March 2023).
- Kaur, A.; Singh, S. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2021, 8, 12345–12356. [Google Scholar]
- Kim, J.; Lee, J. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Sens. J. 2019, 19, 8745–8755. [Google Scholar]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Mankin, R.W.; Hagstrum, D.W.; Smith, M.T.; Roda, A.L.; Kairo, M.T.K. Perspective and Promise: A Century of Insect Acoustic Detection and Monitoring. Am. Èntomol. 2010, 57, 30–44. [Google Scholar] [CrossRef]
- Potamitis, I.; Ganchev, T.; Kontodimas, D. On Automatic Bioacoustic Detection of Pests: The Cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J. Econ. Èntomol. 2011, 102, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Potamitis, I.; Rigakis, I.; Tatlas, N.-A.; Potirakis, S. In-Vivo Vibroacoustic Surveillance of Trees in the Context of the IoT. Sensors 2019, 19, 1366. [Google Scholar] [CrossRef] [Green Version]
- Khorasani, N.E.; Thomas, G.; Balocco, S.; Mann, D. Agricultural Harvester Sound Classification using Convolutional Neural Networks and Spectrograms. Appl. Eng. Agric. 2022, 38, 455–459. [Google Scholar] [CrossRef]
- Khait, I.; Lewin-Epstein, O.; Sharon, R.; Saban, K.; Goldstein, R.; Anikster, Y.; Zeron, Y.; Agassy, C.; Nizan, S.; Sharabi, G.; et al. Sounds emitted by plants under stress are airborne and informative. Cell 2023, 186, 1328–1336.e10. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Haque, A.; Marwaha, S.; Deb, C.K.; Nigam, S.; Arora, A.; Hooda, K.S.; Soujanya, P.L.; Aggarwal, S.K.; Lall, B.; Kumar, M.; et al. Deep learning-based approach for identification of diseases of maize crop. Sci. Rep. 2022, 12, 6334. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Nazir, T.; Javed, A.; Masood, M.; Rashid, J.; Kim, J.; Hussain, A. A robust deep learning approach for tomato plant leaf disease localization and classification. Sci. Rep. 2022, 12, 18568. [Google Scholar] [CrossRef] [PubMed]
- Herabad, M.G. Communication-efficient semi-synchronous hierarchical federated learning with balanced training in heterogeneous IoT edge environments. Internet Things 2023, 21, 100642. [Google Scholar] [CrossRef]
- Zgank, A. IOT-based bee swarm activity acoustic classification using Deep Neural Networks. Sensors 2021, 21, 676. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.K.; Tariq, Z.; Lee, Y. IoT based Urban Noise Monitoring in Deep Learning using Historical Reports. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4179–4184. [Google Scholar] [CrossRef]
- Parks, D.F.; Voitiuk, K.; Geng, J.; Elliott, M.A.; Keefe, M.G.; Jung, E.A.; Robbins, A.; Baudin, P.V.; Ly, V.T.; Hawthorne, N.; et al. IoT cloud laboratory: Internet of Things architecture for cellular biology. Internet Things 2022, 20, 100618. [Google Scholar] [CrossRef] [PubMed]
- Heble, S.; Kumar, A.; Prasad, K.V.; Samirana, S.; Rajalakshmi, P.; Desai, U.B. A low power IOT network for Smart Agriculture. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018. [Google Scholar]
- Khan, A.U.; Khan, M.E.; Hasan, M.; Zakri, W.; Alhazmi, W.; Islam, T. An Efficient Wireless Sensor Network Based on the ESP-MESH Protocol for Indoor and Outdoor Air Quality Monitoring. Sustainability 2022, 14, 16630. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of Agricultural IOT Technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Klimiashvili, G.; Tapparello, C.; Heinzelman, W. LoRa vs. WiFi Ad Hoc: A Performance Analysis and Comparison. In Proceedings of the 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 654–660. [Google Scholar] [CrossRef]
- de Oliveira, F.C.; Rodrigues, J.J.; Rabelo, R.A.; Mumtaz, S. Performance delay comparison in random access procedure for Nb-IOT, Lora, and sigfox IOT protocols. In Proceedings of the 2019 IEEE 1st Sustainable Cities Latin America Conference (SCLA), Arequipa, Peru, 26–29 August 2019. [Google Scholar]
- Piczak, K.J. ESC: Dataset for Environmental Sound Classification. In Proceedings of the 23rd Annual ACM Conference on Multimedia, Brisbane, Australia, 26–30 October 2015. [Google Scholar] [CrossRef]
- Hymel, S.; Banbury, C.; Situnayake, D.; Elium, A.; Ward, C.; Kelcey, M.; Baaijens, M.; Majchrzycki, M.; Plunkett, J.; Reddi, V.J.; et al. Edge Impulse: An MLOps Platform for Tiny Machine Learning. arXiv 2022, arXiv:2212.03332. [Google Scholar] [CrossRef]
- Edge Impulse. Edge Impulse [Computer Software], Version 1.12.0. Available online: https://edgeimpulse.com/ (accessed on 1 March 2023).
- STMicroelectronics. STM32U575CG: Ultra-Low-Power with FPU Arm Cortex-M33 MCU with TrustZone, 160 MHz with 1 Mbyte of Flash Memory [Datasheet]. Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32u575cg.html (accessed on 26 October 2022).
- Kozłowski, A.; Sosnowski, J. Energy Efficiency Trade-Off Between Duty-Cycling and Wake-Up Radio Techniques in IoT Networks. Wirel. Pers. Commun. 2019, 107, 1951–1971. [Google Scholar] [CrossRef] [Green Version]
Parameter | LoRA | Wi-Fi | Sigfox | NB-IoT |
---|---|---|---|---|
Range | Long | Short | Long | Intermediate |
Power consumption | Low | High | Low | High |
Interference | Low | High | Low | Low |
Subscription cost | No | No | Yes | Yes |
Data rate | Low | High | Very Low | Low |
FIRE | INSECT | RAIN | SHEEP | |
---|---|---|---|---|
FIRE | 97.5% | 2.5% | 0% | 0% |
INSECT | 4% | 92% | 4% | 0% |
RAIN | 0% | 2.1% | 97.9% | 0% |
SHEEP | 0% | 3.6% | 0% | 96.4% |
F1 | 0.96 | 0.92 | 0.97 | 0.98 |
FIRE | INSECT | RAIN | SHEEP | UNCERTAIN | |
---|---|---|---|---|---|
FIRE | 89.6% | 10.4% | 0% | 0% | 0% |
INSECT | 16.7% | 70.8% | 10.4% | 0% | 2.1% |
RAIN | 0% | 2.1% | 97.9% | 0% | 0% |
SHEEP | 2.1% | 2.1% | 4.2% | 91.7% | 0% |
F1 | 0.86 | 0.76 | 0.92 | 0.96 | 0% |
MCU | Cortex-M33 @160 MHz | Cortex-M33 @160 MHz |
---|---|---|
Quantized model | Yes (8-bit) | No (float32) |
Peak RAM * | 99.0 KB | 105.6 KB |
Used clash * | 52.4 KB | 59 KB |
Latency (processing + inference * | 76 + 3 ms | 76 + 35 ms |
Peripherals | ADC, GPIO, SPI | ADC, GPIO, SPI |
VDD | 2.4 V | 2.4 V |
Active power ** | 37.5 mW | 37.5 mW |
Stop 3 power with RAM retention ** | 12.0 µW | 12.0 µW |
Duty cycle | 10% | 13.7% |
Average consumption ** | 3.8 mW | 5.1 mW |
Accuracy | 87.5% | 87.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzuhair, A.; Alghaihab, A. The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications. Sensors 2023, 23, 6262. https://doi.org/10.3390/s23146262
Alzuhair A, Alghaihab A. The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications. Sensors. 2023; 23(14):6262. https://doi.org/10.3390/s23146262
Chicago/Turabian StyleAlzuhair, Ahmed, and Abdullah Alghaihab. 2023. "The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications" Sensors 23, no. 14: 6262. https://doi.org/10.3390/s23146262