Subjective Quality Assessment of V-PCC-Compressed Dynamic Point Clouds Degraded by Packet Losses
Abstract
:1. Introduction
- Proposed a method to apply artificial packet losses to sub-streams representing dynamic point clouds compressed with V-PCC;
- Prepared and published a new dataset consisting of three dynamic point clouds compressed with V-PCC, subject to packet losses and annotated with MOS scores obtained at UC and UNIN laboratories. This dataset is publicly available at http://vpccdataset.dynalias.com, accessed on 23 March 2023;
- Performed a comprehensive comparative evaluation of several point cloud objective quality measures (based on different principles) on the newly created dataset.
2. Related Work
3. Subjective Scores Processing and Common Measures for Comparison
4. Dataset Construction and Subjective Quality Evaluation
4.1. Dataset Construction
Listing 1. V-PCC encoder batch script example. |
PccAppEncoder ^ --configurationFolder=cfg/ ^ --config=cfg/common/ctc-common.cfg ^ --config=cfg/condition/ctc-random-access.cfg ^ --config=cfg/sequence/basketball_player_vox11.cfg ^ --config=cfg/rate/ctc-r1.cfg ^ --frameCount=300 ^ --uncompressedDataFolder=basketball_player_vox11\ ^ --uncompressedDataPath=basketball_player_vox11_%%08i.ply ^ --reconstructedDataPath=reconstructed_1/basketballplayer_C01R01_rec_%%08d.ply ^ --compressedStreamPath=compressed_1/basketballplayer_C01R01.bin ^ --keepIntermediateFiles=1 |
- 0: corrupts all the packets according to the error pattern file;
- 1: corrupts all the coded packets but the ones containing intra coded slices;
- 2: corrupts only packets containing intra coded slices.
- 6: PLR 0.5% with compression rate 5, PLR 1% with compression rate 3 and PLR 2% with compression rate 1, with combinations attribute only and occupancy + geometry + attribute;
- 3: compression only degradations, with compression rates 1, 3, and 5;
- 1: reference point cloud.
- For PLR 0.5%: 29–32;
- For PLR 1%: 29–32 (32nd point cloud being lost);
- For PLR 2%: 16–30.
Listing 2. V-PCC PCCVideoDecoder.cpp source code. |
if ( keepIntermediateFiles ) { bitstream.write( binFileName ); } // pause for 10 s std :: this_thread :: sleep_for( std :: chrono::milliseconds( 10,000 ) ); if ( keepIntermediateFiles ) { bitstream.read( binFileName ); } // Decode video |
4.2. Subjective Experiments
4.3. Inter-Laboratory Correlation Results
5. Objective Measures for Point Cloud Quality
5.1. Measures Based on Point Cloud Projections
- MSE (Mean Squared Error), implementation from Matlab 64-bit 2020a;
- PSNR (Peak Signal to Noise Ratio), implementation from Matlab 64-bit 2020a;
- PSNR can be calculated from arithmetic mean of the MSE of the individual image in each video sequence: correlation results are similar to the arithmetic mean of MSE because it is actually scaled version of the arithmetic mean of MSE.
- PSNR can be calculated from average PSNR from all frames in each video sequence: this method was used to later report correlation between PSNR measure and subjective MOS scores. It is shown in [47] that this PSNR can be calculated from the geometric mean of the MSE of the individual image in each video sequence.
5.2. Geometry- and/or Attribute-Based Measures
5.3. Objective Image and Video Quality Measures and Correlation with MOS Scores
5.4. Objective Point Cloud Quality Measures and Correlation with MOS Scores
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What is XR? Towards a Framework for Augmented and Virtual Reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al. Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). Apsipa Trans. Signal Inf. Process. 2020, 9, e13. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Bross, B.; Wang, Y.K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.R. Overview of the Versatile Video Coding (VVC) Standard and its Applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [Google Scholar] [CrossRef]
- Zakharchenko, V. V-PCC Codec Description; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document N18190; ISO/IEC: Marrakech, Morocco, 2019. [Google Scholar]
- Google. Draco 3D Data Compression. Available online: https://google.github.io/draco/ (accessed on 31 May 2023).
- Dai, Q.; Lehnert, R. Impact of Packet Loss on the Perceived Video Quality. In Proceedings of the 2010 2nd International Conference on Evolving Internet, Valencia, Spain, 20–25 September 2010; pp. 206–209. [Google Scholar] [CrossRef]
- Uhl, T.; Klink, J.H.; Nowicki, K.; Hoppe, C. Comparison Study of H.264/AVC, H.265/HEVC and VP9-Coded Video Streams for the Service IPTV. In Proceedings of the 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 13–15 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bienik, J.; Uhrina, M.; Sevcik, L.; Holesova, A. Impact of Packet Loss Rate on Quality of Compressed High Resolution Videos. Sensors 2023, 23, 2744. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Allan, B.; Nauck, D.D.; Rio, M. Benchmarking Video Service Quality: Quantifying the Viewer Impact of Loss-Related Impairments. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1640–1652. [Google Scholar] [CrossRef]
- Díaz, C.; Pérez, P.; Cabrera, J.; Ruiz, J.J.; García, N. XLR (piXel Loss Rate): A Lightweight Indicator to Measure Video QoE in IP Networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1096–1109. [Google Scholar] [CrossRef]
- Song, J.; Yang, F.; Zhou, Y.; Gao, S. Parametric Planning Model for Video Quality Evaluation of IPTV Services Combining Channel and Video Characteristics. IEEE Trans. Multimed. 2017, 19, 1015–1029. [Google Scholar] [CrossRef]
- Alexiou, E.; Viola, I.; Borges, T.M.; Fonseca, T.A.; de Queiroz, R.L.; Ebrahimi, T. A comprehensive study of the rate-distortion performance in MPEG point cloud compression. Apsipa Trans. Signal Inf. Process. 2019, 8, 27. Available online: https://www.epfl.ch/labs/mmspg/quality-assessment-for-point-cloud-compression/ (accessed on 23 March 2023). [CrossRef] [Green Version]
- Perry, S.; Da Silva Cruz, L.A.; Dumic, E.; Thi Nguyen, N.H.; Pinheiro, A.; Alexiou, E. Comparison of Remote Subjective Assessment Strategies in the Context of the JPEG Pleno Point Cloud Activity. In Proceedings of the 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 6–8 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Perry, S.; Da Silva Cruz, L.A.; Prazeres, J.; Pinheiro, A.; Dumic, E.; Lazzarotto, D.; Ebrahimi, T. Subjective and Objective Testing in Support of the JPEG Pleno Point Cloud Compression Activity. In Proceedings of the 2022 10th European Workshop on Visual Information Processing (EUVIP), Lisbon, Portugal, 11–14 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, C.H.; Li, X.; Rajesh, R.; Ooi, W.T.; Hsu, C.H. Dynamic 3D Point Cloud Streaming: Distortion and Concealment. In Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV ’21), Istanbul, Turkey, 28 September–1 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 98–105. [Google Scholar] [CrossRef]
- Hung, T.K.; Huang, I.C.; Cox, S.R.; Ooi, W.T.; Hsu, C.H. Error Concealment of Dynamic 3D Point Cloud Streaming. In Proceedings of the MM ’22 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 3134–3142. [Google Scholar] [CrossRef]
- ITU-R BT.500-14; BT.500: Methodologies for the Subjective Assessment of the Quality of Television Images. International Telecommunications Union: Geneva, Switzerland, 2019.
- Alexiou, E.; Yang, N.; Ebrahimi, T. PointXR: A Toolbox for Visualization and Subjective Evaluation of Point Clouds in Virtual Reality. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, 26–28 May 2020; pp. 1–6. [Google Scholar]
- Dumic, E.; Battisti, F.; Carli, M.; da Silva Cruz, L.A. Point Cloud Visualization Methods: A Study on Subjective Preferences. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–22 January 2021; pp. 595–599. [Google Scholar] [CrossRef]
- Javaheri, A.; Brites, C.; Pereira, F.; Ascenso, J. Point Cloud Rendering After Coding: Impacts on Subjective and Objective Quality. IEEE Trans. Multimed. 2021, 23, 4049–4064. [Google Scholar] [CrossRef]
- Dumic, E.; da Silva Cruz, L.A. Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study. Symmetry 2020, 12, 1955. [Google Scholar] [CrossRef]
- ITU-T P.1401; P.1401: Methods, Metrics and Procedures for Statistical Evaluation, Qualification and Comparison of Objective Quality Prediction Models. International Telecommunications Union: Geneva, Switzerland, 2020.
- JPEG Committee. JPEG Pleno Database. Available online: https://jpeg.org/plenodb/ (accessed on 13 September 2020).
- d’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset; Technical Report, ISO/IEC JTC1/SC29/WG1 Input Document M74006 and ISO/IEC JTC1/SC29/WG11 Input Document m40059; ISO/IEC: Geneva, Switzerland, 2017; Available online: https://jpeg.org/plenodb/pc/8ilabs/ (accessed on 23 March 2023).
- Xu, Y.; Lu, Y.; Wen, Z. Owlii Dynamic Human Mesh Sequence Dataset; Technical Report, ISO/IEC JTC1/SC29/WG11 m41658; ISO/IEC: Macau, China, 2017; Available online: https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset/ (accessed on 23 March 2023).
- Naccari, M. Transmitter Simulator HEVC. Available online: https://gitlab.com/matteo.naccari/transmitter_simulator_hevc (accessed on 23 March 2023).
- Naccari, M. Matlab Script for Gilbert Model. Available online: https://sites.google.com/site/matteonaccari/software?authuser=0 (accessed on 23 March 2023).
- Video Point Cloud Compression—VPCC—Mpeg-Pcc-Tmc2 Test Model Candidate Software. Available online: https://github.com/MPEGGroup/mpeg-pcc-tmc2 (accessed on 23 March 2023).
- Guede, C.; Ricard, J.; Lasserre, S.; Llach, J. Technicolor Point Cloud Renderer; Technical Report, ISO/IEC JTC1/SC29/WG11 MPEG, M40229; ISO/IEC: Hobart, Australia, 2017. [Google Scholar]
- FFmpeg. Available online: https://www.ffmpeg.org/download.html (accessed on 23 March 2023).
- Alexiou, E.; Ebrahimi, T. Exploiting user interactivity in quality assessment of point cloud imaging. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- MPV Video Player. Available online: https://mpv.io (accessed on 23 March 2023).
- Torlig, E.; Alexiou, E.; Fonseca, T.; de Queiroz, R.; Ebrahimi, T. A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing XLI; SPIE: Bellingham, MA, USA, 2018; Volume 10752, p. 17. [Google Scholar] [CrossRef] [Green Version]
- Egiazarian, K.O.; Astola, J.; Ponomarenko, N.N.; Lukin, V.; Battisti, F.; Carli, M. A new full-reference quality metrics based on hvs. In Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, AZ, USA, 22–24 January 2006; pp. 1–4. [Google Scholar]
- PSNR-HVS-M Download Page. Available online: https://www.ponomarenko.info/psnrhvsm.htm (accessed on 23 March 2023).
- Ponomarenko, N.N.; Silvestri, F.; Egiazarian, K.O.; Carli, M.; Astola, J.; Lukin, V.V. On between-coefficient contrast masking of dct basis functions. In Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics VPQM-07, Scottsdale, AZ, USA, 25–26 January 2007; pp. 1–4. [Google Scholar]
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- IW-SSIM: Information Content Weighted Structural Similarity Index for Image Quality Assessment. Available online: https://ece.uwaterloo.ca/~z70wang/research/iwssim/ (accessed on 23 March 2023).
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- Wang, Z.; Li, Q. Information Content Weighting for Perceptual Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 1185–1198. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- FSIM Download Page. Available online: https://web.comp.polyu.edu.hk/cslzhang/IQA/FSIM/FSIM.htm (accessed on 23 March 2023).
- Toward A Practical Perceptual Video Quality Metric, Netflix Technology Blog. Available online: https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652 (accessed on 23 March 2023).
- VMAF: The Journey Continues, Netflix Technology Blog. Available online: https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12 (accessed on 23 March 2023).
- Keleş, O.; Yılmaz, M.A.; Tekalp, A.M.; Korkmaz, C.; Doğan, Z. On the Computation of PSNR for a Set of Images or Video. In Proceedings of the 2021 Picture Coding Symposium (PCS), Bristol, UK, 29 June–2 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Ma, Z.; Xu, Y.; Li, Z.; Sun, J. Inferring Point Cloud Quality via Graph Similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3015–3029. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q.; Xu, Y. MS-GraphSIM: Inferring Point Cloud Quality via Multiscale Graph Similarity. In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21 ), Virtual Event, China, 20–24 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1230–1238. [Google Scholar] [CrossRef]
- Zhou, W.; Yue, G.; Zhang, R.; Qin, Y.; Liu, H. Reduced-Reference Quality Assessment of Point Clouds via Content-Oriented Saliency Projection. IEEE Signal Process. Lett. 2023, 30, 354–358. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Q.; Jiang, Q.; Zhai, G.; Lin, W. Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided Resampling. arXiv 2022, arXiv:cs.MM/2208.14603. [Google Scholar]
- Mekuria, R.; Li, Z.; Tulvan, C.; Chou, P. Evaluation Criteria for PCC (Point Cloud Compression); Technical Report, ISO/IEC JTC1/SC29/WG11 n16332; ISO/IEC: Geneva, Switzerland, 2016. [Google Scholar]
- Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3460–3464. [Google Scholar] [CrossRef]
- Zaghetto, A.; Graziosi, D.; Tabatabai, A. On Density-to-Density Distortion; Technical Report, ISO/IEC JTC1/SC29/WG7 m60331; ISO/IEC: Online, 2022. [Google Scholar]
- Software—Geometric Distortion Metrics for Point Cloud Compression. Available online: https://github.com/mauriceqch/geo_dist (accessed on 23 March 2023).
- PCQM. Available online: https://github.com/MEPP-team/PCQM (accessed on 23 March 2023).
- MS-GraphSIM. Available online: https://github.com/zyj1318053/MS_GraphSIM (accessed on 23 March 2023).
- Nasrabadi, A.T.; Shirsavar, M.A.; Ebrahimi, A.; Ghanbari, M. Investigating the PSNR calculation methods for video sequences with source and channel distortions. In Proceedings of the 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Beijing, China, 25–27 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Zerman, E.; Gao, P.; Ozcinar, C.; Smolic, A. Subjective and Objective Quality Assessment for Volumetric Video Compression. Electron. Imaging 2019, 31, art00021. [Google Scholar] [CrossRef]
- Ak, A.; Zerman, E.; Quach, M.; Chetouani, A.; Smolic, A.; Valenzise, G.; Callet, P.L. BASICS: Broad quality Assessment of Static point clouds In Compression Scenarios. arXiv 2023, arXiv:cs.MM/2302.04796. [Google Scholar]
Basketballplayer | Longdress | Soldier | Queen | |
---|---|---|---|---|
Voxel depth (bits) per dimension | 11 | 10 | 10 | 9 |
RGB attribute bits | 24 | 24 | 24 | 24 |
Overall uncompressed bits per point (bpp) | 57 | 54 | 54 | 51 |
Number of point clouds | 300 | 300 | 300 | 250 |
Average number of points per point cloud | 2,908,043 | 834,315 | 1,075,299 | 1,002,412 |
Compression rate r1 (bpp) | 0.0502 | 0.0864 | 0.0581 | 0.0433 |
Compression rate r2 (bpp) | 0.0671 | 0.1331 | 0.0774 | 0.0577 |
Compression rate r3 (bpp) | 0.0957 | 0.2244 | 0.1114 | 0.0851 |
Compression rate r4 (bpp) | 0.1545 | 0.4336 | 0.1934 | 0.1568 |
Compression rate r5 (bpp) | 0.3063 | 1.0011 | 0.4058 | 0.3147 |
0.5%, OGA | 0.5%, A | 1%, OGA | 1%, A | 2%, OGA | 2%, A | |
---|---|---|---|---|---|---|
Corruption modality | all (0) | all (0) | all (0) | all (0) | all (0) | all (0) |
Offset | 20 | 20 | 16 | 17 | 1 | 1 |
True PLR | 0.53 | 0.53 | 1.08 | 1.08 | 2 | 2 |
Burst length, BL | 1.5 | 1.5 | 1.2 | 1.2 | 1.5 | 1.5 |
True burst length | 2.7692 | 2.7692 | 2.0556 | 2.0556 | 2.6389 | 2.6389 |
Basketballplayer | Longdress | Soldier | |
---|---|---|---|
Compression rates | 5 | 5 | 5 |
Packet loss rates (PLRs) | 3 | 3 | 3 |
corrupted bitstream types | 2 | 2 | 2 |
only compressed | 5 | 5 | 5 |
reference | 1 | 1 | 1 |
overall | 36 | 36 | 36 |
Index | Pos.x | Pos.y | Pos.z | View.x | View.y | View.z | Up.x | Up.y | Up.z | |
---|---|---|---|---|---|---|---|---|---|---|
Basketballplayer | 0 | 1024 | 1024 | −5504 | 1024 | 1024 | 1024 | 0.0000 | 1.0000 | 0.0000 |
300 | 1024 | 1024 | −5504 | 1024 | 1024 | 1024 | 0.0000 | 1.0000 | 0.0000 | |
Longdress | 0 | 512 | 512 | 3840 | 512 | 512 | 512 | 0.0000 | 1.0000 | 0.0000 |
300 | 512 | 512 | 3840 | 512 | 512 | 512 | 0.0000 | 1.0000 | 0.0000 | |
Soldier | 0 | 512 | 512 | 3840 | 512 | 512 | 512 | 0.0000 | 1.0000 | 0.0000 |
300 | 512 | 512 | 3840 | 512 | 512 | 512 | 0.0000 | 1.0000 | 0.0000 | |
Queen | 0 | 512 | 512 | −2816 | 512 | 512 | 512 | 1.0000 | 0.0000 | 0.0000 |
250 | 512 | 512 | −2816 | 512 | 512 | 512 | 1.0000 | 0.0000 | 0.0000 |
UC | UNIN | |
---|---|---|
Monitor | Eizo CG319X 4K HDR | Sony KD-55x8505C |
Screen Diagonal | 31.1 | 55 |
Resolution | 4096 × 2160 pixels | 3840 × 2160 pixels |
Viewing distance | 0.9 m | 1.5 m |
Male Observers | 17 | 10 |
Female Observers | 6 | 6 |
Overall | 23 | 16 |
Age range (years) | 18–56 | 22–37 |
Average age (years) | 26.7 | 26.6 |
Number of outliers | 0 | 0 |
C1 | C2 | C3 | C4 | No Fit | |
---|---|---|---|---|---|
PCC | 0.9610 | 0.9510 | 0.9520 | 0.9496 | 0.9496 |
SROCC | 0.9152 | 0.9003 | 0.9003 | 0.9003 | 0.9003 |
KROCC | 0.7848 | 0.7638 | 0.7638 | 0.7638 | 0.7638 |
RMSE | 0.2256 | 0.2524 | 0.2499 | 0.2559 | 0.2923 |
OR | 0.2762 | 0.3143 | 0.2762 | 0.3143 | 0.3714 |
C1 | C2 | C3 | C4 | No Fit | |
---|---|---|---|---|---|
PCC | 0.9527 | 0.9498 | 0.9512 | 0.9496 | 0.9496 |
SROCC | 0.9003 | 0.9003 | 0.9003 | 0.9003 | 0.9003 |
KROCC | 0.7638 | 0.7638 | 0.7638 | 0.7638 | 0.7638 |
RMSE | 0.2616 | 0.2693 | 0.2656 | 0.2698 | 0.2923 |
OR | 0.2095 | 0.2190 | 0.2095 | 0.2095 | 0.2571 |
MSE | PSNR | PSNRHVS | PSNRHVSM | SSIM | MULTISSIM | IWMSE | IWPSNR | IWSSIM | FSIM | FSIMC | VMAF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.9443 | 0.7629 | 0.7249 | 0.7151 | 0.9485 | 0.8659 | 0.9274 | 0.7086 | 0.8265 | 0.9285 | 0.9268 | 0.5897 |
PCC_C2 | 0.9299 | 0.7648 | 0.7277 | 0.7199 | 0.9318 | 0.8371 | 0.9215 | 0.7090 | 0.7881 | 0.9105 | 0.9085 | 0.5893 |
PCC_C3 | 0.8693 | 0.7651 | 0.7262 | 0.7179 | 0.9050 | 0.8317 | 0.9084 | 0.7089 | 0.7876 | 0.8756 | 0.8751 | 0.5903 |
PCC_C4 | 0.6871 | 0.7629 | 0.7249 | 0.7151 | 0.7520 | 0.7630 | 0.7576 | 0.7083 | 0.7580 | 0.7277 | 0.7283 | 0.5883 |
SROCC | 0.9442 | 0.7559 | 0.7232 | 0.7141 | 0.9181 | 0.8206 | 0.9093 | 0.7035 | 0.7760 | 0.8924 | 0.8906 | 0.5607 |
KROCC | 0.8133 | 0.5852 | 0.5482 | 0.5382 | 0.7789 | 0.6541 | 0.7563 | 0.5223 | 0.5978 | 0.7463 | 0.7445 | 0.4012 |
RMSE_C1 | 0.2686 | 0.5277 | 0.5622 | 0.5705 | 0.2585 | 0.4083 | 0.5327 | 0.5759 | 0.4595 | 0.3031 | 0.3066 | 0.6591 |
OR_C1 | 0.3905 | 0.5905 | 0.6190 | 0.6381 | 0.3905 | 0.5238 | 0.6000 | 0.6762 | 0.5810 | 0.4286 | 0.4476 | 0.7238 |
MSE | PSNR | PSNRHVS | PSNRHVSM | SSIM | MULTISSIM | IWMSE | IWPSNR | IWSSIM | FSIM | FSIMC | VMAF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.9267 | 0.8225 | 0.7938 | 0.7865 | 0.9678 | 0.9176 | 0.9427 | 0.7854 | 0.8806 | 0.9670 | 0.9661 | 0.6986 |
PCC_C2 | 0.9114 | 0.8296 | 0.7980 | 0.7919 | 0.9617 | 0.9128 | 0.9399 | 0.7859 | 0.8771 | 0.9607 | 0.9598 | 0.6992 |
PCC_C3 | 0.8622 | 0.8307 | 0.7965 | 0.7895 | 0.9438 | 0.9085 | 0.9308 | 0.7855 | 0.8758 | 0.9292 | 0.9298 | 0.6993 |
PCC_C4 | 0.6904 | 0.8225 | 0.7938 | 0.7865 | 0.7669 | 0.8047 | 0.7752 | 0.7845 | 0.8311 | 0.7463 | 0.7471 | 0.6985 |
SROCC | 0.9142 | 0.8481 | 0.8220 | 0.8155 | 0.9582 | 0.9154 | 0.9391 | 0.8070 | 0.8868 | 0.9643 | 0.9630 | 0.7055 |
KROCC | 0.7761 | 0.6708 | 0.6385 | 0.6304 | 0.8455 | 0.7717 | 0.8054 | 0.6196 | 0.7212 | 0.8548 | 0.8518 | 0.5117 |
RMSE_C1 | 0.3233 | 0.4893 | 0.5233 | 0.5313 | 0.2166 | 0.3421 | 0.5436 | 0.5326 | 0.4076 | 0.2193 | 0.2223 | 0.6156 |
OR_C1 | 0.3048 | 0.5048 | 0.5048 | 0.5048 | 0.1429 | 0.2952 | 0.4667 | 0.4286 | 0.3905 | 0.1238 | 0.1238 | 0.5905 |
RMSp2p | PSNRRMS,p2p | RMSp2pl | PSNRRMS,p2pl | Hausp2p | PSNRHaus,p2p | Hausp2pl | PSNRHaus,p2pl | PCQM | PSNRD3 | MS-GraphSIM | |
---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.6069 | 0.5693 | 0.5889 | 0.5532 | 0.6092 | 0.5490 | 0.6093 | 0.5420 | 0.7561 | 0.5695 | 0.5561 |
PCC_C2 | 0.6064 | 0.5613 | 0.5876 | 0.5411 | 0.6017 | 0.5530 | 0.6005 | 0.5490 | 0.7569 | 0.5624 | 0.5564 |
PCC_C3 | 0.5996 | 0.5605 | 0.5837 | 0.5383 | 0.6019 | 0.5520 | 0.6008 | 0.5471 | 0.7564 | 0.5456 | 0.5629 |
PCC_C4 | 0.5231 | 0.5501 | 0.4736 | 0.5197 | 0.5843 | 0.5477 | 0.5839 | 0.5420 | 0.6368 | 0.5043 | 0.5561 |
SROCC | 0.6005 | 0.5400 | 0.5990 | 0.5308 | 0.5807 | 0.5507 | 0.5797 | 0.5421 | 0.7344 | 0.4820 | 0.5916 |
KROCC | 0.4695 | 0.3978 | 0.4594 | 0.3885 | 0.4479 | 0.4053 | 0.4460 | 0.3993 | 0.5615 | 0.3560 | 0.4256 |
RMSE_C1 | 0.6487 | 0.6709 | 0.6596 | 0.6799 | 0.6472 | 0.6822 | 0.6471 | 0.6859 | 0.5341 | 0.6708 | 0.6783 |
OR_C1 | 0.4667 | 0.5524 | 0.5810 | 0.6286 | 0.4952 | 0.5429 | 0.4952 | 0.5619 | 0.5810 | 0.5429 | 0.7048 |
RMSp2p | PSNRRMS,p2p | RMSp2pl | PSNRRMS,p2pl | Hausp2p | PSNRHaus,p2p | Hausp2pl | PSNRHaus,p2pl | PCQM | PSNRD3 | MS-GraphSIM | |
---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.5850 | 0.5882 | 0.5445 | 0.5760 | 0.5782 | 0.5603 | 0.5786 | 0.5606 | 0.8260 | 0.6292 | 0.6673 |
PCC_C2 | 0.5605 | 0.5874 | 0.5445 | 0.5755 | 0.5514 | 0.5595 | 0.5505 | 0.5557 | 0.8207 | 0.6290 | 0.6532 |
PCC_C3 | 0.5579 | 0.5882 | 0.5433 | 0.5759 | 0.5517 | 0.5592 | 0.5507 | 0.5550 | 0.8116 | 0.6277 | 0.6554 |
PCC_C4 | 0.5140 | 0.5818 | 0.4673 | 0.5643 | 0.5490 | 0.5567 | 0.5484 | 0.5519 | 0.6727 | 0.6005 | 0.6532 |
SROCC | 0.5403 | 0.5884 | 0.5780 | 0.5883 | 0.5106 | 0.5468 | 0.5091 | 0.5385 | 0.8514 | 0.6174 | 0.7099 |
KROCC | 0.4021 | 0.4406 | 0.4331 | 0.4372 | 0.3774 | 0.4047 | 0.3755 | 0.3991 | 0.6727 | 0.4784 | 0.5354 |
RMSE_C1 | 0.6978 | 0.6958 | 0.7216 | 0.7033 | 0.7020 | 0.7126 | 0.7017 | 0.7124 | 0.4849 | 0.6687 | 0.6408 |
OR_C1 | 0.5524 | 0.4667 | 0.5143 | 0.5143 | 0.5524 | 0.5143 | 0.5333 | 0.4952 | 0.4952 | 0.4000 | 0.5333 |
RMSp2p | PSNRRMS,p2p | RMSp2pl | PSNRRMS,p2pl | Hausp2p | PSNRHaus,p2p | Hausp2pl | PSNRHaus,p2pl | PCQM | PSNRD3 | MS-GraphSIM | |
---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.9467 | 0.7345 | 0.8887 | 0.6939 | 0.9772 | 0.7382 | 0.9762 | 0.7819 | 0.7426 | 0.7240 | 0.5309 |
PCC_C2 | 0.9263 | 0.7292 | 0.8695 | 0.6863 | 0.9718 | 0.7611 | 0.9702 | 0.7526 | 0.7490 | 0.7113 | 0.5204 |
PCC_C3 | 0.8362 | 0.7315 | 0.7878 | 0.6851 | 0.9650 | 0.7604 | 0.9634 | 0.7521 | 0.7433 | 0.7113 | 0.5264 |
PCC_C4 | 0.6563 | 0.7172 | 0.5848 | 0.6635 | 0.7955 | 0.7382 | 0.7953 | 0.7328 | 0.5902 | 0.7112 | 0.5194 |
SROCC | 0.9385 | 0.7634 | 0.9085 | 0.7377 | 0.9195 | 0.7845 | 0.9155 | 0.7724 | 0.7861 | 0.7324 | 0.5999 |
KROCC | 0.7926 | 0.5780 | 0.7433 | 0.5493 | 0.7743 | 0.5963 | 0.7685 | 0.5872 | 0.6205 | 0.5654 | 0.4437 |
RMSE_C1 | 0.3122 | 0.6575 | 0.4442 | 0.6977 | 0.2057 | 0.6536 | 0.2102 | 0.6040 | 0.6489 | 0.6684 | 0.8211 |
OR_C1 | 0.4167 | 0.6333 | 0.7000 | 0.8167 | 0.3000 | 0.6833 | 0.3000 | 0.6167 | 0.8333 | 0.7833 | 0.7833 |
RMSp2p | PSNRRMS,p2p | RMSp2pl | PSNRRMS,p2pl | Hausp2p | PSNRHaus,p2p | Hausp2pl | PSNRHaus,p2pl | PCQM | PSNRD3 | MS-GraphSIM | |
---|---|---|---|---|---|---|---|---|---|---|---|
PCC_C1 | 0.9425 | 0.8075 | 0.9050 | 0.7629 | 0.9517 | 0.8164 | 0.9516 | 0.7906 | 0.8208 | 0.8330 | 0.6299 |
PCC_C2 | 0.8957 | 0.8052 | 0.8641 | 0.7623 | 0.9356 | 0.8156 | 0.9343 | 0.8088 | 0.8397 | 0.8295 | 0.6236 |
PCC_C3 | 0.8326 | 0.8066 | 0.7873 | 0.7626 | 0.9310 | 0.8151 | 0.9297 | 0.8085 | 0.8217 | 0.8300 | 0.6254 |
PCC_C4 | 0.6997 | 0.7900 | 0.6259 | 0.7423 | 0.8196 | 0.7951 | 0.8194 | 0.7906 | 0.6498 | 0.8279 | 0.6228 |
SROCC | 0.8976 | 0.8190 | 0.8937 | 0.7909 | 0.8966 | 0.8210 | 0.8917 | 0.8100 | 0.8740 | 0.8556 | 0.6831 |
KROCC | 0.7525 | 0.6507 | 0.7330 | 0.6198 | 0.7513 | 0.6461 | 0.7456 | 0.6370 | 0.7136 | 0.6999 | 0.5158 |
RMSE_C1 | 0.3332 | 0.5879 | 0.4239 | 0.6443 | 0.3061 | 0.5756 | 0.3063 | 0.6102 | 0.5693 | 0.5514 | 0.7741 |
OR_C1 | 0.4500 | 0.5167 | 0.5500 | 0.6333 | 0.2833 | 0.4833 | 0.2667 | 0.5500 | 0.6333 | 0.5333 | 0.7167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumic, E.; da Silva Cruz, L.A. Subjective Quality Assessment of V-PCC-Compressed Dynamic Point Clouds Degraded by Packet Losses. Sensors 2023, 23, 5623. https://doi.org/10.3390/s23125623
Dumic E, da Silva Cruz LA. Subjective Quality Assessment of V-PCC-Compressed Dynamic Point Clouds Degraded by Packet Losses. Sensors. 2023; 23(12):5623. https://doi.org/10.3390/s23125623
Chicago/Turabian StyleDumic, Emil, and Luis A. da Silva Cruz. 2023. "Subjective Quality Assessment of V-PCC-Compressed Dynamic Point Clouds Degraded by Packet Losses" Sensors 23, no. 12: 5623. https://doi.org/10.3390/s23125623