Identity-Guided Spatial Attention for Vehicle Re-Identification
Abstract
:1. Introduction
- We introduce a spatial attention method to eliminate noisy factors and concentrate more on vehicle-specific details. An attention map is generated to highlight the discriminative regions of the input image.
- We propose an ISA module that leverages the ISA map to produce an attention matrix. The feature maps are refined by the attention weight, resulting in the acquisition of robust features.
- Distinguished from previous attention methods, ISA constitutes an unsupervised technique, necessitating no supplementary manual annotation and readily adaptable to other vehicle re-identification frameworks.
2. Related Work
2.1. Vehicle Re-Identification
2.2. Attention Methods
3. Method
3.1. Preliminaries
3.2. Framework
3.3. Identity-Guided Spatial Attention
3.3.1. Single Identity-guided Spatial Attention Map
3.3.2. Generating Identity-Guided Attention Map
3.4. Features with Identity-Guided Spatial Attention
4. Experimental Results
4.1. Implementation Details
4.2. Parameters Analysis
4.3. Comparison with State-of-the-Art
4.3.1. Evaluation on VeRi-776
Methods | mAP | rank1 | rank5 | |
---|---|---|---|---|
LOMO [64] | 0.096 | 0.253 | 0.465 | |
BOW-CN [65] | § | 0.122 | 0.339 | 0.536 |
EALN [66] | § | 0.574 | 0.843 | 0.94 |
BIR [67] | § | 0.707 | 0.904 | 0.97 |
RAM [19] | § | 0.615 | 0.886 | 0.94 |
VAMI+STR [16] | § | 0.613 | 0.859 | 0.918 |
GSTE [68] | 0.594 | 0.962 | 0.989 | |
VANet [15] | § | 0.663 | 0.897 | 0.959 |
AAVER [61] | § | 0.663 | 0.901 | 0.943 |
PRN [10] | § | 0.743 | 0.943 | 0.987 |
PRF [5] | § | 0.779 | 0.964 | 0.985 |
PCRNet [25] | § | 0.786 | 0.954 | 0.984 |
TransREID [62] | 0.782 | 0.965 | - | |
TransREID+views [62] | § | 0.796 | 0.970 | 0.984 |
PVEN [11] | § | 0.795 | 0.956 | 0.984 |
PGAN [60] | § | 0.793 | 0.965 | 0.983 |
SAVER [24] | 0.796 | 0.964 | 0.986 | |
VARID [63] | § | 0.793 | 0.96 | 0.992 |
DFNet [69] | § | 0.809 | 0.97 | 0.990 |
baseline | 0.805 | 0.953 | 0.982 | |
ISA (Ours) | 0.821 | 0.973 | 0.990 |
4.3.2. Evaluation on VehicleID
4.3.3. Evaluation on VERI-Wild
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Dong, Q.; Zhang, Z.; Liu, S.; Durrani, T.S. Cross-Modality Person Re-Identification via Local Paired Graph Attention Network. Sensors 2023, 23, 4011. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Huang, L.; Liang, J.; Hong, L.; Zhu, J. Progressively Hybrid Transformer for Multi-Modal Vehicle Re-Identification. Sensors 2023, 23, 4206. [Google Scholar] [CrossRef]
- Lv, K.; Du, H.; Hou, Y.; Deng, W.; Sheng, H.; Jiao, J.; Zheng, L. Vehicle Re-Identification with Location and Time Stamps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 399–406. [Google Scholar]
- Sheng, H.; Lv, K.; Liu, Y.; Ke, W.; Lyu, W.; Xiong, Z.; Li, W. Combining pose invariant and discriminative features for vehicle reidentification. IEEE Internet Things J. 2020, 8, 3189–3200. [Google Scholar] [CrossRef]
- Lv, K.; Sheng, H.; Xiong, Z.; Li, W.; Zheng, L. Pose-Based View Synthesis for Vehicles: A Perspective Aware Method. IEEE Trans. Image Process. 2021, 29, 5163–5174. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Z.; Hu, X.; Lin, Y.; Lv, K. Skill-based Hierarchical Reinforcement Learning for Target Visual Navigation. IEEE Trans. Multimed. 2023. [Google Scholar] [CrossRef]
- Hu, X.; Wu, Z.; Lv, K.; Wang, S.; Lin, Y. Agent-centric relation graph for object visual navigation. arXiv 2021, arXiv:2111.14422. [Google Scholar]
- Zhang, H.; Lin, Y.; Han, S.; Lv, K. Lexicographic Actor-Critic Deep Reinforcement Learning for Urban Autonomous Driving. IEEE Trans. Veh. Technol. 2022, 72, 4308–4319. [Google Scholar] [CrossRef]
- Lv, K.; Sheng, H.; Xiong, Z.; Li, W.; Zheng, L. Improving driver gaze prediction with reinforced attention. IEEE Trans. Multimed. 2020, 23, 4198–4207. [Google Scholar] [CrossRef]
- He, B.; Li, J.; Zhao, Y.; Tian, Y. Part-regularized near-duplicate vehicle re-identification. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3997–4005. [Google Scholar]
- Meng, D.; Li, L.; Liu, X.; Li, Y.; Yang, S.; Zha, Z.J.; Gao, X.; Wang, S.; Huang, Q. Parsing-based View-aware Embedding Network for Vehicle Re-Identification. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7103–7112. [Google Scholar]
- Wang, Z.; Tang, L.; Liu, X.; Yao, Z.; Yi, S.; Shao, J.; Yan, J.; Wang, S.; Li, H.; Wang, X. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 379–387. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Chu, R.; Sun, Y.; Li, Y.; Liu, Z.; Zhang, C.; Wei, Y. Vehicle re-identification with viewpoint-aware metric learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8282–8291. [Google Scholar]
- Zhou, Y.; Shao, L. Viewpoint-aware attentive multi-view inference for vehicle re-identification. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6489–6498. [Google Scholar]
- Zhou, Y.; Shao, L. Vehicle re-identification by adversarial bi-directional lstm network. In Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 653–662. [Google Scholar]
- Zhu, X.; Luo, Z.; Fu, P.; Ji, X. VOC-ReID: Vehicle re-identification based on vehicle-orientation-camera. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 602–603. [Google Scholar]
- Liu, X.; Zhang, S.; Huang, Q.; Gao, W. Ram: A region-aware deep model for vehicle re-identification. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Zapletal, D.; Herout, A. Vehicle Re-identification for Automatic Video Traffic Surveillance. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1568–1574. [Google Scholar]
- Shen, D.; Zhao, S.; Hu, J.; Feng, H.; Cai, D.; He, X. ES-Net: Erasing Salient Parts to Learn More in Re-Identification. IEEE Trans. Image Process. 2021, 30, 1676–1686. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Wang, X.; Hong, R.; Tian, Q. Group-group loss-based global-regional feature learning for vehicle re-identification. IEEE Trans. Image Process. 2019, 29, 2638–2652. [Google Scholar] [CrossRef]
- Shen, Y.; Xiao, T.; Li, H.; Yi, S.; Wang, X. Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals. In Proceedings of the2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1900–1909. [Google Scholar]
- Khorramshahi, P.; Peri, N.; Chen, J.; Chellappa, R. The Devil Is in the Details: Self-supervised Attention for Vehicle Re-identification. In Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12359, pp. 369–386. [Google Scholar]
- Liu, X.; Liu, W.; Zheng, J.; Yan, C.; Mei, T. Beyond the Parts: Learning Multi-view Cross-part Correlation for Vehicle Re-identification. In Proceedings of the ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 907–915. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Bollmann, M.; Bingel, J.; Søgaard, A. Learning attention for historical text normalization by learning to pronounce. In Proceedings of the ACL, Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 332–344. [Google Scholar]
- Xu, M.; Wong, D.F.; Yang, B.; Zhang, Y.; Chao, L.S. Leveraging Local and Global Patterns for Self-Attention Networks. In Proceedings of the ACL, Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 3069–3075. [Google Scholar]
- Chen, H.; Huang, S.; Chiang, D.; Dai, X.; Chen, J. Combining Character and Word Information in Neural Machine Translation Using a Multi-Level Attention. In Proceedings of the NAACL, Association for Computational Linguistics, New Orleans, LA, USA, 1–6 June 2018; pp. 1284–1293. [Google Scholar]
- Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the EMNLP, The Association for Computational Linguistics, Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the NeurIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-Attention with Relative Position Representations. In Proceedings of the NAACL, Association for Computational Linguistics, New Orleans, LA, USA, 1–6 June 2018; pp. 464–468. [Google Scholar]
- Zhao, H.; Jia, J.; Koltun, V. Exploring Self-Attention for Image Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 10073–10082. [Google Scholar]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Zhang, Z.; Lin, H.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-Attention Networks. arXiv 2020, arXiv:2004.08955. [Google Scholar]
- Chen, G.; Lin, C.; Ren, L.; Lu, J.; Zhou, J. Self-Critical Attention Learning for Person Re-Identification. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9636–9645. [Google Scholar]
- Zheng, H.; Fu, J.; Zha, Z.; Luo, J. Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-Grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 15–20 June 2019; pp. 5012–5021. [Google Scholar]
- Zhou, L.; Gong, C.; Liu, Z.; Fu, K. SAL: Selection and Attention Losses for Weakly Supervised Semantic Segmentation. IEEE Trans. Multimed. 2021, 23, 1035–1048. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 603–612. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. In Proceedings of the 2018 British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; BMVA Press: Durham, UK, 2018; p. 285. [Google Scholar]
- Gao, G.; Zhao, W.; Liu, Q.; Wang, Y. Co-Saliency Detection With Co-Attention Fully Convolutional Network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 877–889. [Google Scholar] [CrossRef]
- Wang, W.; Song, H.; Zhao, S.; Shen, J.; Zhao, S.; Hoi, S.C.H.; Ling, H. Learning Unsupervised Video Object Segmentation Through Visual Attention. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3064–3074. [Google Scholar]
- Zhu, L.; Chen, J.; Hu, X.; Fu, C.; Xu, X.; Qin, J.; Heng, P. Aggregating Attentional Dilated Features for Salient Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3358–3371. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Zheng, H.; Fu, J.; Zha, Z.; Luo, J.; Mei, T. Learning Rich Part Hierarchies with Progressive Attention Networks for Fine-Grained Image Recognition. IEEE Trans. Image Process. 2020, 29, 476–488. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 3156–3164. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Park, J.; Woo, S.; Lee, J.; Kweon, I.S. BAM: Bottleneck Attention Module. In Proceedings of the BMVC, Newcastle, UK, 3–6 September 2018; BMVA Press: Durham, UK, 2018; pp. 147–160. [Google Scholar]
- Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention augmented convolutional networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3286–3295. [Google Scholar]
- Li, W.; Zhu, X.; Gong, S. Harmonious attention network for person re-identification. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2285–2294. [Google Scholar]
- Wang, P.; Ding, C.; Shao, Z.; Hong, Z.; Zhang, S.; Tao, D. Quality-aware part models for occluded person re-identification. IEEE Trans. Multimed. 2022. [Google Scholar] [CrossRef]
- Liu, S.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 1871–1880. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009; IEEE Computer Society: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, X.; Liu, W.; Mei, T.; Ma, H. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 869–884. [Google Scholar]
- Liu, H.; Tian, Y.; Yang, Y.; Pang, L.; Huang, T. Deep relative distance learning: Tell the difference between similar vehicles. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 2167–2175. [Google Scholar]
- Lou, Y.; Bai, Y.; Liu, J.; Wang, S.; Duan, L. Veri-wild: A large dataset and a new method for vehicle re-identification in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019; pp. 3235–3243. [Google Scholar]
- Pan, X.; Luo, P.; Shi, J.; Tang, X. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. In Proceedings of the European Conference Computer Vision, Munich, Germany, 8–14 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11208, pp. 484–500. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020; pp. 13001–13008. [Google Scholar]
- Zhang, X.; Zhang, R.; Cao, J.; Gong, D.; You, M.; Shen, C. Part-guided attention learning for vehicle instance retrieval. IEEE Trans. Intell. Transp. Syst. 2020, 23, 3048–3060. [Google Scholar] [CrossRef]
- Khorramshahi, P.; Kumar, A.; Peri, N.; Rambhatla, S.S.; Chen, J.C.; Chellappa, R. A dual-path model with adaptive attention for vehicle re-identification. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6132–6141. [Google Scholar]
- He, S.; Luo, H.; Wang, P.; Wang, F.; Li, H.; Jiang, W. Transreid: Transformer-based object re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Li, Y.; Liu, K.; Jin, Y.; Wang, T.; Lin, W. VARID: Viewpoint-aware re-identification of vehicle based on triplet loss. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1381–1390. [Google Scholar] [CrossRef]
- Liao, S.; Hu, Y.; Zhu, X.; Li, S.Z. Person re-identification by local maximal occurrence representation and metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2197–2206. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- Lou, Y.; Bai, Y.; Liu, J.; Wang, S.; Duan, L.Y. Embedding adversarial learning for vehicle re-identification. IEEE Trans. Image Process. 2019, 28, 3794–3807. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Zhang, T.; Zhang, W. Background segmentation for vehicle re-identification. In Proceedings of the International Conference on Multimedia Modeling, Daejeon, Republic of Korea, 5–8 January 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 88–99. [Google Scholar]
- Bai, Y.; Lou, Y.; Gao, F.; Wang, S.; Wu, Y.; Duan, L.Y. Group-sensitive triplet embedding for vehicle reidentification. IEEE Trans. Multimedia 2018, 20, 2385–2399. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, J.; Lou, Y.; Wang, C.; Duan, L. Disentangled Feature Learning Network and a Comprehensive Benchmark for Vehicle Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6854–6871. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liang, B.; Xie, W.; Liao, Y.; Kuang, Z.; Zhuang, Y.; Ding, X. Dual domain multi-task model for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 2020, 23, 2991–2999. [Google Scholar] [CrossRef]
mAP | rank1 | |
---|---|---|
0.1 | 0.793 | 0.957 |
0.2 | 0.814 | 0.970 |
0.3 | 0.824 | 0.978 |
Method | Small | Medium | Large | |||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | rank1 | rank5 | mAP | rank1 | rank5 | mAP | rank1 | rank5 | ||
VAMI [16] | § | - | 0.631 | 0.833 | - | 0.529 | 0.751 | - | 0.473 | 0.703 |
AAVER [61] | § | - | 0.747 | 0.938 | - | 0.686 | 0.900 | - | 0.635 | 0.856 |
EALN [66] | § | 0.775 | 0.751 | 0.881 | 0.742 | 0.718 | 0.839 | 0.71 | 0.693 | 0.814 |
RAM [19] | § | - | 0.752 | 0.915 | - | 0.723 | 0.870 | - | 0.677 | 0.845 |
PRN [10] | § | - | 0.784 | 0.923 | - | 0.750 | 0.883 | - | 0.742 | 0.864 |
SAVER [24] | - | 0.799 | 0.952 | - | 0.776 | 0.911 | - | 0.753 | 0.883 | |
PGAN [60] | - | - | - | - | - | - | 0.839 | 0.778 | 0.921 | |
TransReID [62] | - | 0.823 | 0.961 | - | - | - | - | - | - | |
PVEN [11] | § | - | 0.847 | 0.970 | - | 0.806 | 0.945 | - | 0.778 | 0.920 |
PCRNet [25] | § | - | 0.866 | 0.981 | - | 0.822 | 0.963 | - | 0.804 | 0.942 |
DDM [70] | 0.823 | 0.757 | 0.905 | 0.802 | 0.743 | 0.889 | 0.785 | 0.731 | 0.853 | |
VARID [63] | § | 0.885 | 0.858 | 0.969 | 0.847 | 0.812 | 0.941 | 0.824 | 0.795 | 0.922 |
baseline | 0.903 | 0.849 | 0.972 | 0.879 | 0.817 | 0.96 | 0.845 | 0.78 | 0.93 | |
ISA (Ours) | 0.910 | 0.871 | 0.987 | 0.891 | 0.831 | 0.961 | 0.860 | 0.791 | 0.947 |
Method | Small | Medium | Large | |||||||
---|---|---|---|---|---|---|---|---|---|---|
mAP | rank1 | rank5 | mAP | rank1 | rank5 | mAP | rank1 | rank5 | ||
DRDL [56] | 0.225 | 0.570 | 0.750 | 0.193 | 0.519 | 0.710 | 0.148 | 0.446 | 0.610 | |
GSTE [68] | 0.314 | 0.605 | 0.801 | 0.262 | 0.521 | 0.749 | 0.195 | 0.454 | 0.665 | |
FDA-Net [57] | § | 0.351 | 0.640 | 0.828 | 0.298 | 0.578 | 0.783 | 0.228 | 0.494 | 0.705 |
AAVER [61] | 0.622 | 0.758 | 0.927 | 0.536 | 0.682 | 0.888 | 0.416 | 0.586 | 0.815 | |
SAVER [24] | 0.809 | 0.945 | 0.981 | 0.753 | 0.927 | 0.974 | 0.677 | 0.895 | 0.958 | |
PCRNet [25] | § | 0.812 | 0.925 | - | 0.753 | 0.893 | - | 0.671 | 0.85 | - |
VARID [63] | § | 0.754 | 0.753 | 0.952 | 0.708 | 0.688 | 0.918 | 0.642 | 0.632 | 0.832 |
baseline | 0.801 | 0.923 | 0.965 | 0.756 | 0.908 | 0.956 | 0.682 | 0.843 | 0.953 | |
ISA (Ours) | 0.830 | 0.949 | 0.988 | 0.781 | 0.941 | 0.988 | 0.710 | 0.916 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, K.; Han, S.; Lin, Y. Identity-Guided Spatial Attention for Vehicle Re-Identification. Sensors 2023, 23, 5152. https://doi.org/10.3390/s23115152
Lv K, Han S, Lin Y. Identity-Guided Spatial Attention for Vehicle Re-Identification. Sensors. 2023; 23(11):5152. https://doi.org/10.3390/s23115152
Chicago/Turabian StyleLv, Kai, Sheng Han, and Youfang Lin. 2023. "Identity-Guided Spatial Attention for Vehicle Re-Identification" Sensors 23, no. 11: 5152. https://doi.org/10.3390/s23115152
APA StyleLv, K., Han, S., & Lin, Y. (2023). Identity-Guided Spatial Attention for Vehicle Re-Identification. Sensors, 23(11), 5152. https://doi.org/10.3390/s23115152