Numerical Analysis of Highly Sensitive Twin-Core, Gold-Coated, D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor
Abstract
:1. Introduction and Literature Review
2. Block Diagram and Mode of Operation
3. Sensor Design and Optimization Process
4. Resonance Conditions and Optimum Energy Transfers System
5. Analysis of Mathematical Equations
6. Results and Performance Analysis
6.1. Loss and Amplitude Sensitivity Change with RI of Analyte
6.2. Effect of Gold Layer Thickness (GLT) on Loss and Amplitude Sensitivity
6.3. Effect of Central Air Hole Area on Loss and Amplitude Sensitivity
6.4. Effect of Rectangular Air Hole Area of Cladding on Loss and Amplitude Sensitivity
6.5. Effect of Circular Air Hole Area of Cladding on Loss and Amplitude Sensitivity
6.6. Effect of PML Thickness on Loss and Amplitude Sensitivity
6.7. Effect of Analyte Layer Thickness (ALT) on Loss and Amplitude Sensitivity
7. Correlation between Resonance Wavelength and Refractive Index (RI) of Analyte
8. Exploring the Correlation between Sensor Length and Loss
9. Potential Fabrication Methods
10. Promising Applications of PCF-SPR Sensors
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, M.-J.; Ma, Y.-F.; Chau, Y.-F.; Huang, D.-W. Surface plasmon resonance in a hexagonal nanostructure formed by seven coreshell nanocylinders. Appl. Opt. 2010, 49, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.Z.; Chen, W.T.; Huang, Y.-W.; Wu, P.C.; Tseng, M.L.; Wang, Y.T.; Chau, Y.-F.; Tsai, D.P. Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J. Opt. 2012, 14, 114010. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y. One-Dimensional Plasmonic Sensors. Front. Phys. 2020, 8, 312. [Google Scholar] [CrossRef]
- Pannipitiya, A.; Rukhlenko, I.; Premaratne, M.; Hattori, H.; Agrawal, G. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Exp. 2010, 18, 6191–6204. [Google Scholar] [CrossRef]
- Chau, Y.-F.; Yeh, H.-H.; Tsai, D. Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nano cylindrical pairs. J. Electromagn. Waves Appl. 2010, 24, 1005–1014. [Google Scholar] [CrossRef]
- Chau, Y.-F. Surface Plasmon Effects Excited by the Dielectric Hole in a Silver-Shell Nanospherical Pair. Plasmonics 2009, 4, 253. [Google Scholar] [CrossRef]
- Chau, Y.-F.; Yeh, H.-H.; Tsai, D.P. Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys. Plasmas 2009, 16, 022303. [Google Scholar] [CrossRef]
- Tong, L.; Wei, H.; Zhang, S.; Xu, H. Recent advances in plasmonic sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Exp. 2009, 17, 16505–16517. [Google Scholar] [CrossRef]
- Jabbari, S.; Dabirmanesh, B.; Arab, S.S.; Amanlou, M.; Daneshjou, S. A novel enzyme based SPR-biosensor to detect bromocriptine as an ergoline derivative drug. Sens. Actuators B 2017, 5, 240. [Google Scholar] [CrossRef]
- Islam, M.S.; Cordeiro, C.M.B.; Sultana, J.; Aoni, R.A.; Ahmed, S.R.; Feng, S.; Dorraki, M.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. A Hi-Bi ultrasensitive surface plasmon resonance fiber sensor. IEEE Access 2019, 7, 79085–79094. [Google Scholar] [CrossRef]
- Kaur, V.; Singh, S. Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection. J. Nanophotonics 2019, 13, 1. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ali, S. A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance. Photonics 2019, 18, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Feng, X.; Xiong, X.; Hu, S.; Jiang, Z.; Dong, J.; Zhu, J.; Qiu, W.W.; Guan, H. Long-range surface plasmon resonance sensor based on side-polished fiber for bio sensing applications. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [Google Scholar]
- Weng, S.; Pei, L.; Ning, J.T.; Li, J. High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 2017, 5, 103–107. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.; Wang, E.S.X.; Yang, D.; Wang, T. Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Optics. Laser Technol. 2019, 113, 46–51. [Google Scholar] [CrossRef]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Singh, V.K. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 2017, 12, 1367–1372. [Google Scholar] [CrossRef]
- Mao, P.; Luo, Y.; Chen, C.; Peng, S.; Feng, X.; Tang, J.; Fang, J.; Zhang, J.; Lu, H.; Yu, J. Design and optimization of surface plasmon resonance sensor based on multimode fiber. Opt. Quantum Electron. 2015, 47, 1495–1502. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, H.; Singh, A.; Singh, R.K.; Tiwari, A.D. Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers. Plasmonics 2020, 15, 1323–1330. [Google Scholar] [CrossRef]
- Han, H.; Hou, D.; Luan, N.; Bai, Z.; Song, L.; Liu, J.; Hu, Y. Surface Plasmon Resonance Sensor Based on Dual-Side Polished Microstructured Optical Fiber with Dual-Core. Sensors 2020, 20, 3911. [Google Scholar] [CrossRef] [PubMed]
- Abdi, M.M.; Abdullah, L.C.; Sadrolhosseini, A.R.; Yunus, W.M.M.; Moksin, M.M.; Tahir, P.M. Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite. PLoS ONE 2011, 6, e24578. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.C.C.; Chung, T.C.C.; Siti, Z.B.H.J.; Muhammad, R.R.K.; Roshan, T.; Chee, M.L.; Hai, P.C. Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures. Nanomaterials 2021, 11, 2097. [Google Scholar]
- Kiroriwal, M.; Singal, P. Design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal fiber sensor based on surface plasmon resonance. J. Nanophotonics 2021, 15, 026008. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic Control of Double Plasmon-Induced Transparencies in Aperture-Coupled Waveguide-Cavity System. Plasmonics 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Wu, Y.; Zhou, X.; Liao, W. Theoretical Description of Dynamic Transmission Characteristics in MDM Waveguide Aperture-Side-Coupled with Ring Cavity. Plasmonics 2015, 10, 1537–1543. [Google Scholar] [CrossRef]
- Lin, C.-T.; Chang, M.-N.; Huang, H.J.; Chen, C.-H.; Sun, R.-J.; Liao, B.-H.; Chau, Y.-F.C.; Hsiao, C.-N.; Shiao, M.-H.; Tseng, F.-G. Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim. Acta 2016, 192, 15–21. [Google Scholar] [CrossRef]
- Chao, C.-T.C.; Kooh, M.R.R.; Chau, Y.-F.C.; Thotagamuge, R. Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface. Photonics 2022, 9, 916. [Google Scholar] [CrossRef]
- Yasli, A.; Ademgil, H.; Haxha, S.; Aggoun, A. Multi-Channel Photonic Crystal Fiber Based Surface Plasmon Resonance Sensor for Multi-Analyte Sensing. IEEE Photonics J. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef]
- Peng, T.-C.; Lin, W.-C.; Chen, C.-W.; Tsai, D.P.; Chiang, H.-P. Enhanced Sensitivity of Surface Plasmon Resonance Phase Interrogation Biosensor by Using Silver Nanoparticles. Plasmonics 2011, 6, 29–34. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 2016, 11, 1505–1509. [Google Scholar] [CrossRef]
- Yan, X.; Li, B.; Cheng, T.; Li, S. Analysis of high sensitivity photonic crystal fiber sensor based on surface plasmon resonance of refractive indexes of liquids. Sensors 2018, 18, 2922. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Chen, Y.; Li, X.; Yin, Z.; Wang, L.; Geng, Y.; Hong, X. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths. Appl. Opt. 2017, 56, 1550–1555. [Google Scholar] [CrossRef]
- Hossain, B.; Paul, A.K.; Islam, M.A.; Hossain, M.F.; Rahman, M.M. Design and analysis of highly sensitive prism based surface plasmon resonance optical salinity sensor. Results Opt. 2022, 7, 100217. [Google Scholar] [CrossRef]
- Francesco, C.; Francesco, B.; Sara, T.; Cosimo, T.; Ambra, G. Biosensor with optical fiber gratings. Nanophotonics 2017, 6, 663–679. [Google Scholar]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance. Plasmonics 2016, 12, 489–496. [Google Scholar] [CrossRef]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Miroshnichenko, A.E. Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B 2018, 35, 2816–2821. [Google Scholar] [CrossRef]
- Popescu, V.; Sharma, A.K.; Marques, C. Resonant interaction between a core mode and two complementary supermodes in a honeycomb PCF reflector-based SPR sensor. Optik 2021, 227, 166121. [Google Scholar] [CrossRef]
- Tong, K.; Wang, F.; Wang, M.; Dang, P.; Wang, Y. Three-core photonic crystal fiber surface plasmon resonance sensor. Opt. Fiber Technol. 2018, 46, 306–310. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef] [PubMed]
- Rifat, A.A.; Mahdiraji, G.A.; Chow, D.M.; Shee, Y.G.; Ahmed, R.; Adikan, F.R.M. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core. Sensors 2015, 15, 11499–11510. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.C.; Tou, Z.Q.; Chow, K.K.; Chan, C.C. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications. Opt. Express 2015, 23, 31286–31294. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Dash, J. Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon. 2014, 26, 1092–1095. [Google Scholar]
- Kravets, V. Graphene-protected copper and silver plasmonics. Sci. Rep. 2014, 4, 5517. [Google Scholar] [CrossRef]
- Schriver, M. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood. Opt. Fiber Technol. 2018, 41, 125–130. [Google Scholar] [CrossRef]
- Hassan, S.; Mohammad, F.; Md, A.M. Slotted photonic crystal fiber-based plasmonic biosensor. Appl. Opt. 2021, 6, 358. [Google Scholar]
- Yan, X.; Wang, Y.; Cheng, T.; Li, S. Photonic Crystal Fiber SPR Liquid Sensor Based on Elliptical Detective Channel. Micromachines 2021, 12, 408. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Liu, Q.; Lu, X.; Wang, F.; Sun, T.; Chu, P.K. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Exp. 2018, 26, 9039–9049. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Y.; Duan, L.; Yao, J. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. 2020, 27, 2993866. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, T.; Li, S.; Suzuki, T.; Ohishi, Y. Practical sensing approach based on surface plasmon resonance in a photonic crystal fiber. OSA Contin. 2018, 1, 1332–1340. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. On the performance of graphene-based D-shaped photonic crystal fiber biosensor using surface plasmon resonance. Plasmonics 2015, 10, 1123–1131. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Wang, G.; Li, S.; An, G.; Wang, X.; Zhao, Y.; Zhang, W.; Chen, H. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance. Opt. Quantum Electron. 2016, 48, 46. [Google Scholar] [CrossRef]
- Wu, J.; Li, S.; Wang, X.; Shi, M.; Feng, X.; Liu, Y. Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based o n surface plasmon resonance. Appl. Opt. 2018, 57, 4002–4007. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, W.; Yi, Z.; Ma, G.; Xiang, G.; Dai, B.; Yu, Y.; Zhou, G.; Wu, P.; Liu, C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. Opt. Exp. 2022, 30, 39055–39067. [Google Scholar] [CrossRef]
- Ahmmed, A.R.; Hasan, M.R.; Ahmed, R.; Butt, H. Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophoton. 2017, 12, 012503. [Google Scholar]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2014, 313, 94–98. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, G.R.; Mahdiraji, A.; Adikan, F.R.M. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 2017, 17, 2776–2783. [Google Scholar] [CrossRef]
- Mahfuzal, M.; Hossain, M.; Haque, E.; Hai, N.H.; Namihira, Y.; Ahmed, F. Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens. J. 2020, 20, 692–700. [Google Scholar]
- Yang, K.-Y.; Chau, Y.-F.; Huang, Y.-W.; Yeh, H.-Y.; Tsai, D.P. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. J. Appl. Phys. 2011, 109, 093103. [Google Scholar] [CrossRef]
- Chau, Y.-F.C. Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J. Phys. D Appl. Phys. 2020, 53, 115401. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Mishra, G.P.; Sharma, S.; Ku, S. Plasmonic Biosensor with Gold and Titanium Dioxide Immobilized on Photonic Crystal Fiber for Blood Composition Detection. IEEE Sens. J. 2022, 10, 21859601. [Google Scholar] [CrossRef]
- Gamal, Y.; Youni, B.M.; Hegazy, S.F.; Badr, Y.; Hameed, M.F.O.; Obayya, S.S.A. Highly Sensitive Multi-Functional Plasmonic Biosensor Based on Dual Core Photonic Crystal Fiber. IEEE Sens. J. 2022, 22, 6731–6738. [Google Scholar] [CrossRef]
- Hossain, M.; Sunny, S.M.A.S.; Ahmed, T. Design and Analysis of Circular Lattice PCF Biosensor-Based on Surface Plasmon Resonance. In Proceedings of the 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 18–19 December 2021; p. 21667176. [Google Scholar]
- Wang, H.; Chen, S.; Dai, W.; Cai, X.; Fu, H. A High Sensitivity Surface Plasmon Resonance Biosensor Based on Photonic Crystal Fibers for Refractive Index Sensing. In Proceedings of the 2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25–29 April 2022. [Google Scholar]
- Rahman, M.A.; Ahmed, T.; Haque, M.I.; Anower, M.S. A Photonic Crystal Fiber Based Asymmetric Slotted Structured Highly Sensitive Refractive Index Plasmonic Biosensor. J. Sens. Technol. 2022, 12, 1–17. [Google Scholar] [CrossRef]
- Shakya, A.K.; Ramola, A.; Singh, S.; Van, V. Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt. Exp. 2022, 30, 9233–9255. [Google Scholar] [CrossRef]
- Nijhum, M.J.; Ahmed, N.T.; Hossain, M.A.; Atai, J.; Hai, N.H. Micro channel-Embedded D-Shaped Photonic Crystal Fiber-Based Highly Sensitive Plasmonic Biosensor. Appl. Sci. 2022, 12, 4122. [Google Scholar] [CrossRef]
- Zuhayer, A.; Shafkat, A. Design and analysis of a gold-coated dual-core photonic crystal fiber bio-sensor using surface plasmon resonance. Sens. Bio-Sens. Res. 2021, 33, 100432. [Google Scholar] [CrossRef]
- MJ, B.M.L.; AS, D.; Rahman, H.M. Design and Performance Analysis of Simple PCF Based Sensor with High Sensitivity for Sensing the Presence of Bacteria Pseudomonas aeruginosa. Ann. Thyroid. 2022, 8, 3. [Google Scholar]
- Ahmmed, A.R.; Mahdiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.R.M. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Exp. 2016, 24, 2485–2495. [Google Scholar]
- An, G.; Shuguang, G.A.; Yan, L.X.; Zhang, X.; Yuan, Z.; Wang, H.; Zhang, Y.; Hao, X.; Shao, Y.; Han, Z. Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 2017, 12, 465–471. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; Liu, H.; Hu, J.; Zhou, G. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photon. J. 2017, 9, 6801608. [Google Scholar] [CrossRef]
- Romanova, V.A.; Matyushkin, L.B. Sol-gel fabrication of one-dimensional photonic crystals. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 1–3 February 2017; p. 16839343. [Google Scholar]
- Kujawa, D.I.; Stępie, R.; Klimczak, M.; Filipkowski, A.; Franczyk, M.; Kociszewski, L.; Buzniak, J.; Harasny, K.; Nski, R.B. Stack and draw fabrication of soft glass microstructured fiber optics. Sciences 2014, 62, 667–682. [Google Scholar]
- Chao, C.T.C.; Chau, Y.F.C.; Mahadi, A.H.; Kooh, M.R.R.; Kumara, N.T.R.N.; Chiang, H.P. Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Chin. J. Phys. 2021, 71, 286–299. [Google Scholar]
- Islam, R.M.; Khan, M.M.I.; Mehjabin, M.; Chowdhury, J.A.; Islam, M. Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys. 2020, 19, 103501. [Google Scholar]
- Boyd, D.A.; Greengard, L.; Brongersma, M.; El-Naggar, M.Y.; Goodwin, D.G. Plasmon-assisted chemical vapor deposition. Nano Lett. 2006, 6, 2592–2597. [Google Scholar] [CrossRef]
- Lv, J.; Liang, T.; Gu, Q.; Liu, Q.; Ying, Y.; Si, G. A High Refractive Index Plasmonic Micro-Channel Sensor Based on Photonic Crystal Fiber. Nanomaterials 2022, 12, 3764. [Google Scholar] [CrossRef]
- Ahmet, Y. Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ayushman, R.; Anupma, M.; Surinder, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 2021, 127, 643. [Google Scholar]
Refs. | RI Range | WR (RIU) | FOM (1/RIU) | AS (1/RIU) | WS (nm/RIU) |
---|---|---|---|---|---|
[64] | NA | 5.0 × 10−5 | NA | 574 | 12,400 |
[65] | NA | NA | NA | NA | 34,600 |
[66] | 1.31–40 | 8.26 × 10−6 | NA | 1921 | 12,100 |
[67] | 1.33–1.41 | 7.767 × 10−6 | NA | 6465 | 10,300 |
[68] | 1.30–1.44 | 9.09 × 10−6 | NA | 326 | 11,000 |
[69] | 1.34–1.38 | 5.55 × 10−6 | 93.45 | 2158 | 20,000 |
[70] | 1.33–1.44 | 6.94 × 10−6 | 839 | 1439 | 63,000 |
[71] | 1.35–1.40 | 12.5 × 10−6 | NA | 1443 | 8000 |
[72] | 1.33–1.40 | NA | NA | NA | NA |
[73] | 1.46–1.485 | 1.22 × 10−5 | NA | 820 | 23,000 |
Pro. Sen. | 1.28–1.42 | 1 × 10−5 | 900 | 3746 | 9000 |
Area of Air Hole A (µm2) | Area of Air Hole B (µm2) | Area of Air Hole C (µm2) | GLT (nm) | ALT (nm) | PML (nm) |
---|---|---|---|---|---|
0.0314 | 1.0 | 0.6359 | 26 | 580 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardar, M.R.; Faisal, M. Numerical Analysis of Highly Sensitive Twin-Core, Gold-Coated, D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor. Sensors 2023, 23, 5029. https://doi.org/10.3390/s23115029
Sardar MR, Faisal M. Numerical Analysis of Highly Sensitive Twin-Core, Gold-Coated, D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor. Sensors. 2023; 23(11):5029. https://doi.org/10.3390/s23115029
Chicago/Turabian StyleSardar, Md. Ranju, and Mohammad Faisal. 2023. "Numerical Analysis of Highly Sensitive Twin-Core, Gold-Coated, D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor" Sensors 23, no. 11: 5029. https://doi.org/10.3390/s23115029