Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images
Abstract
:1. Introduction
2. Principles and Methods Used to Measure the Longitudinal Chromatic Aberration
2.1. Purkinje Images
2.2. Hartmann’s Test
3. Description of the Measurement System
Test Subjects
4. Purkinje Image Detection
5. Wavefront Measurement Using a Modal Method with Zernike Polynomials and Local Slopes
Chromatic Aberration Measurement
6. Results
6.1. Discussion
6.2. Implication of Longitudinal Chromatic Aberration in the Generation of New Devices
6.3. Spot Detection
6.4. Degree in the Zernike Polynomials
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thibos, L.N.; Bradley, A.; Still, D.L.; Zhang, X.; Howarth, P.A. Theory and measurement of ocular chromatic aberration. Vis. Res. 1990, 30, 33–49. [Google Scholar] [CrossRef]
- Thibos, L.N.; Bradley, A.; Zhang, X.X. Effect of ocular chromatic aberration on monocular visual performance. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1991, 68, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Smith, G.; Smith, G. Optics of the Human Eye; Butterworth-Heinemann: Oxford, UK, 2000; Volume 35. [Google Scholar]
- Bedford, R.E.; Wyszecki, G. Axial chromatic aberration of the human eye. JOSA 1957, 47, 564_1-565. [Google Scholar] [CrossRef]
- Marcos, S.; Burns, S.A.; Prieto, P.M.; Navarro, R.; Baraibar, B. Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes. Vis. Res. 2001, 41, 3861–3871. [Google Scholar] [CrossRef] [Green Version]
- Howarth, P.A.; Zhang, X.X.; Bradley, A.; Still, D.L.; Thibos, L.N. Does the chromatic aberration of the eye vary with age? JOSA A 1988, 5, 2087–2092. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, B.; Hogan, R.E. The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm. Vis. Res. 1985, 25, 1747–1753. [Google Scholar] [CrossRef]
- Marcos, S.; Burns, S.A.; Moreno-Barriusop, E.; Navarro, R. A new approach to the study of ocular chromatic aberrations. Vis. Res. 1999, 39, 4309–4323. [Google Scholar] [CrossRef]
- Charman, W.N.; Jennings, J.A.M. Objective measurements of the longitudinal chromatic aberration of the human eye. Vis. Res. 1976, 16, 999–1005. [Google Scholar] [CrossRef]
- Llorente, L.; Diaz-Santana, L.; Lara-Saucedo, D.; Marcos, S. Aberrations of the human eye in visible and near infrared illumination. Optom. Vis. Sci. 2003, 80, 26–35. [Google Scholar] [CrossRef]
- Rynders, M.C.; Navarro, R.; Losada, M.A. Objective measurement of the off-axis longitudinal chromatic aberration in the human eye. Vis. Res. 1998, 38, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Wald, G.; Griffin, D.R. The change in refractive power of the human eye in dim and bright light. JOSA 1947, 37, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Vinas, M.; Dorronsoro, C.; Cortes, D.; Pascual, D.; Marcos, S. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomed. Opt. Express 2015, 6, 948–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibos, L.N.; Ye, M.; Zhang, X.; Bradley, A. The chromatic eye: A new reduced-eye model of ocular chromatic aberration in humans. Appl. Opt. 1992, 31, 3594–3600. [Google Scholar] [CrossRef] [PubMed]
- Ogboso, Y.U.; Bedell, H.E. Magnitude of lateral chromatic aberration across the retina of the human eye. JOSA A 1987, 4, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Simonet, P.; Campbell, M.C. The optical transverse chromatic aberration on the fovea of the human eye. Vis. Res. 1990, 30, 187–206. [Google Scholar] [CrossRef]
- Winter, S.; Sabesan, R.; Tiruveedhula, P.; Privitera, C.; Unsbo, P.; Lundström, L.; Roorda, A. Transverse chromatic aberration across the visual field of the human eye. J. Vis. 2016, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Harmening, W.M.; Tiruveedhula, P.; Roorda, A.; Sincich, L.C. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed. Opt. Express 2012, 3, 2066–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Privitera, C.M.; Sabesan, R.; Winter, S.; Tiruveedhula, P.; Roorda, A. Eye-tracking technology for real-time monitoring of transverse chromatic aberration. Opt. Lett. 2016, 41, 1728–1731. [Google Scholar] [CrossRef] [Green Version]
- Ming, Y.E.; Bradley, A.; Thibos, L.N.; Xiaoxiao, Z. The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations. Vis. Res. 1992, 32, 2121–2128. [Google Scholar] [CrossRef]
- McLellan, J.S.; Marcos, S.; Prieto, P.M.; Burns, S.A. Imperfect optics may be the eye’s defence against chromatic blur. Nature 2002, 417, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Marcos, S.; Benedi, C.; Vinas, M.; Dorronsoro, C.; Burns, S.A.; Peli, E. Visual benefit of correcting High Order Aberrations in blue or green light: An optical effect? Investig. Ophthalmol. Vis. Sci. 2018, 59, 654. [Google Scholar]
- Zhang, X.; Bradley, A.; Thibos, L.N. Achromatizing the human eye: The problem of chromatic parallax. JOSA A 1991, 8, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Kuchenbecker, J.A.; Touch, P.; Sabesan, R. Measuring and compensating for ocular longitudinal chromatic aberration. Optica 2019, 6, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Suchkov, N.; Fernández, E.J.; Artal, P. Impact of longitudinal chromatic aberration on through-focus visual acuity. Opt. Express 2019, 27, 35935–35947. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.J.; Unterhuber, A.; Považay, B.; Hermann, B.; Artal, P.; Drexler, W. Chromatic aberration correction of the human eye for retinal imaging in the near infrared. Opt. Express 2006, 14, 6213–6225. [Google Scholar] [CrossRef]
- Howarth, P.A.; Bradley, A. The longitudinal chromatic aberration of the human eye, and its correction. Vis. Res. 1986, 26, 361–366. [Google Scholar] [CrossRef]
- Atchison, D.A.; Smith, G. Chromatic dispersions of the ocular media of human eyes. JOSA A 2005, 22, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.J.; Unterhuber, A.; Prieto, P.M.; Hermann, B.; Drexler, W.; Artal, P. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt. Express 2005, 13, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Senior, K.R. (Ed.) The Eye: The Physiology of Human Perception; The Rosen Publishing Group, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Hanzlik, P.J. Purkinje’s pioneer self-experiments in psychopharmacology: Part I. Calif. West. Med. 1938, 49, 52. [Google Scholar]
- Hanzlik, P.J. Purkinje’s pioneer self-experiments in psychopharmacology: Part II. Calif. West. Med. 1938, 49, 140. [Google Scholar]
- Lee, J.W.; Cho, C.W.; Shin, K.Y.; Lee, E.C.; Park, K.R. 3D gaze tracking method using Purkinje images on eye optical model and pupil. Opt. Lasers Eng. 2012, 50, 736–751. [Google Scholar] [CrossRef]
- Jóźwik, A.; Siedlecki, D.; Zając, M. Analysis of Purkinje images as an effective method for estimation of intraocular lens implant location in the eyeball. Optik 2014, 125, 6021–6025. [Google Scholar] [CrossRef]
- Greenwald, S.W.; Loreti, L.; Funk, M.; Zilberman, R.; Maes, P. Eye gaze tracking with google cardboard using purkinje images. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, Munich, Germany, 2–4 November 2016; pp. 19–22. [Google Scholar]
- Artal, P.; Marcos, S.; Navarro, R.; Williams, D.R. Odd aberrations and double-pass measurements of retinal image quality. JOSA A 1995, 12, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Guirao, A.; Lopez-Gil, N.; Artal, P. Double-pass measurements of retinal image quality: A review of the theory, limitations and results. In Vision Science and Its Applications; Optical Society of America: Washington, DC, USA, 2000; p. NW4. [Google Scholar]
- Malacara-Hernández, D.; Malacara-Doblado, D. What is a Hartmann test? Appl. Opt. 2015, 54, 2296–2301. [Google Scholar] [CrossRef]
- Barry, J.C.; Effert, R.; Reim, M.; Meyer-Ebrecht, D. Computational principles in Purkinje I and IV reflection pattern evaluation for the assessment of ocular alignment. Investig. Ophthalmol. Vis. Sci. 1994, 35, 4205–4218. [Google Scholar]
- ANSI Z136.1-2000; Safe Use of Lasers. American National Standards Institute (ANSI): New York, NY, USA, 2007.
- Bozomitu, R.G.; Păsărică, A.; Cehan, V.; Rotariu, C.; Barabaşa, C. Pupil centre coordinates detection using the circular Hough transform technique. In Proceedings of the 2015 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, 6–10 May 2015; pp. 462–465. [Google Scholar]
- Yuen, H.K.; Princen, J.; Illingworth, J.; Kittler, J. Comparative study of Hough transform methods for circle finding. Image Vis. Comput. 1990, 8, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor. JOSA A 1994, 11, 1949–1957. [Google Scholar] [CrossRef]
- Malacara, D. (Ed.) Optical Shop Testing; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 59. [Google Scholar]
- Lakshminarayanan, V.; Fleck, A. Zernike polynomials: A guide. J. Mod. Opt. 2011, 58, 545–561. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, J.; Dai, Y.; Zhang, Y. Simultaneous quantification of longitudinal and transverse ocular chromatic aberrations with Hartmann–Shack wavefront sensor. J. Innov. Opt. Health Sci. 2018, 11, 1850021. [Google Scholar] [CrossRef] [Green Version]
- Manzanera, S.; Canovas, C.; Prieto, P.M.; Artal, P. A wavelength tunable wavefront sensor for the human eye. Opt. Express 2008, 16, 7748–7755. [Google Scholar] [CrossRef]
- Hashim, A.R. Pupil detection based on color difference and circular hough transform. Int. J. Electr. Comput. Eng. 2018, 8, 3278–3284. [Google Scholar]
- Divya, S.; Dhivya, A. Human Eye Pupil Detection Technique Using Circular Hough Transform. Int. J. Adv. Res. Innov. 2019, 7, 116–118. [Google Scholar]
- Malacara-Hernández, Z.; Malacara-Doblado, D.; Malacara-Hernández, D. Least-squares fitting of Hartmann or Shack–Hartmann data with a circular array of sampling points. Appl. Opt. 2015, 54, E113–E122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Term | Zernike Polynomial | Meaning |
---|---|---|
Constant term | ||
Tilt in x-direction | ||
Tilt in y-direction | ||
Oblique primary astigmatism | ||
Defocus | ||
Vertical/Hor. Primary astigmatism |
Subject | Age | LCA(D) |
---|---|---|
S1 | 24 | 0.4953 |
S2 | 26 | 0.4949 |
S3 | 24 | 0.5013 |
S4 | 28 | 0.5044 |
S5 | 30 | 0.4963 |
Average | 26.4 | 0.4948 |
Study | Number of Subjects | Wavelength (nm) | Average LCA (D) |
---|---|---|---|
Manzanera et al. [47] (O) | 3 | 440–694 | 1.75 |
Vinas et al. [13] (O) | 5 | 488–700 | 1.00 |
Vinas et al. [13] (S) | 5 | 488–700 | 1.51 |
Fernández et al. [29] (O) | 5 | 700–950 | 0.45 |
This study (O) | 5 | 440–640 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderon-Uribe, U.; Hernandez-Gomez, G.; Gomez-Vieyra, A. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images. Sensors 2022, 22, 2653. https://doi.org/10.3390/s22072653
Calderon-Uribe U, Hernandez-Gomez G, Gomez-Vieyra A. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images. Sensors. 2022; 22(7):2653. https://doi.org/10.3390/s22072653
Chicago/Turabian StyleCalderon-Uribe, Uriel, Geovanni Hernandez-Gomez, and Armando Gomez-Vieyra. 2022. "Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images" Sensors 22, no. 7: 2653. https://doi.org/10.3390/s22072653
APA StyleCalderon-Uribe, U., Hernandez-Gomez, G., & Gomez-Vieyra, A. (2022). Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images. Sensors, 22(7), 2653. https://doi.org/10.3390/s22072653