Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Sample Size Calculation
2.3. Control Group
2.4. Study Group
2.5. Posturography Evaluation
2.6. MediPost
2.7. Data Analysis and Statistical Methodology
3. Results
4. Discussion
5. Conclusions
Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterka, R.J. Sensory Integration for Human Balance Control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Forbes, P.A.; Chen, A.; Blouin, J.S. Sensorimotor Control of Standing Balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, Y.; Gurfinkel, V.S. Human Postural Control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Tamás, L.T.; Mudry, A. Endre Hőgyes (1847–1906), Forgotten Father of the Vestibulo-Ocular Reflex. Otol. Neurotol. 2019, 40, e938–e943. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.S.; Barin, K.; Dodson, E.E. Dizziness in the Elderly. Dizziness Vertigo Across Lifesp. 2019, 209–222. [Google Scholar] [CrossRef]
- Cohen, H.S.; Alford, B.R. A Review on Screening Tests for Vestibular Disorders Cohen HS. A Review on Screening Tests for Vestibular Disorders. J. Neurophysiol. 2019, 122, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Antoniadou, E.; Kalivioti, X.; Stolakis, K.; Koloniari, A.; Megas, P.; Tyllianakis, M.; Panagiotopoulos, E. Reliability and Validity of the MCTSIB Dynamic Platform Test to Assess Balance in a Population of Older Women Living in the Community. J. Musculoskelet. Neuronal Interact. 2020, 20, 185–193. [Google Scholar]
- Kingma, H.; Gauchard, G.C.; de Waele, C.; van Nechel, C.; Bisdorff, A.; Yelnik, A.; Magnusson, M.; Perrin, P.P. Stocktaking on the Development of Posturography for Clinical Use. J. Vestib. Res. Equilib. Orientat. 2011, 21, 117–125. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the Upright Balance Assessment Based on the Force Plate. Int. J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Visser, J.E.; Carpenter, M.G.; van der Kooij, H.; Bloem, B.R. The Clinical Utility of Posturography. Clin. Neurophysiol. 2008, 119, 2424–2436. [Google Scholar] [CrossRef]
- Allsopp Tristan, J.; Dornhoffer, J.L. Dynamic Posturography. In Diagnosis and Treatment of Vestibular Disorders; Babu, S., Schutt, C.A., Bojrab, D.I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 99–105. ISBN 978-3-319-97858-1. [Google Scholar]
- Tyemi, D.; Oda, M.; Freitas Ganança, C. Computerized Dynamic Posturography in the Assessment of Body Balance in Individuals with Vestibular Dysfunction. Orig. Artic. Audiol. Commun. Res. 2015, 20, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Crétual, A. Which Biomechanical Models Are Currently Used in Standing Posture Analysis? Neurophysiol. Clin. 2015, 45, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Gawronska, A.; Pajor, A.; Zamyslowska-Szmytke, E.; Rosiak, O.; Jozefowicz-Korczynska, M. Usefulness of Mobile Devices in the Diagnosis and Rehabilitation of Patients with Dizziness and Balance Disorders: A State of the Art Review. Clin. Interv. Aging 2020, 15, 2397–2406. [Google Scholar] [CrossRef] [PubMed]
- Basta, D.; Rossi-Izquierdo, M.; Soto-Varela, A.; Ernst, A. Mobile Posturography: Posturographic Analysis of Daily-Life Mobility. Otol. Neurotol. 2013, 34, 288–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlap, P.M.; Holmberg, J.M.; Whitney, S.L. Vestibular Rehabilitation: Advances in Peripheral and Central Vestibular Disorders. Curr. Opin. Neurol. 2019, 32, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Soto-Varela, A.; Rossi-Izquierdo, M.; del-Río-Valeiras, M.; Faraldo-García, A.; Vaamonde-Sánchez-Andrade, I.; Lirola-Delgado, A.; Santos-Pérez, S. Vestibular Rehabilitation with Mobile Posturography as a “Low-Cost” Alternative to Vestibular Rehabilitation with Computerized Dynamic Posturography, in Old People with Imbalance: A Randomized Clinical Trial. Aging Clin. Exp. Res. 2021, 33, 2807–2819. [Google Scholar] [CrossRef] [PubMed]
- Carender, W.J.; Grzesiak, M.; Telian, S.A. Vestibular Physical Therapy and Fall Risk Assessment. Otolaryngol. Clin. N. Am. 2021, 54, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Guirguis-Blake, J.M.; Michael, Y.L.; Perdue, L.A.; Coppola, E.L.; Beil, T.L. Interventions to Prevent Falls in Older Adults. JAMA 2018, 319, 1705. [Google Scholar] [CrossRef] [PubMed]
- Drootin, M. Summary of the Updated American Geriatrics Society/British Geriatrics Society Clinical Practice Guideline for Prevention of Falls in Older Persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.; Gera, G.; Horak, F.B.; Blackinton, M.T.; Besch, M.; King, L. Instrumented Test of Sensory Integration for Balance: A Validation Study. J. Geriatr. Phys. Ther. 2018, 41, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kotas, R.; Janc, M.; Kaminski, M.; Marciniak, P.; Zamyslowska-Szmytke, E.; Tylman, W. Evaluation of Agreement Between Static Posturography Methods Employing Tensometers and Inertial Sensors. IEEE Access 2019, 7, 164120–164126. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; Hajian-Tilaki, K.O. Sampling Variability of Nonparametric Estimates of the Areas under Receiver Operating Characteristic Curves: An Update. Acad. Radiol. 1997, 4, 49–58. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Valldeperes, A.; Altuna, X.; Martinez-Basterra, Z.; Rossi-Izquierdo, M.; Benitez-Rosario, J.; Perez-Fernandez, N.; Rey-Martinez, J. Wireless Inertial Measurement Unit (IMU)-Based Posturography. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Varela, D.G.; Carneiro, J.A.O.; Colafêmina, J.F. Static Postural Balance Study in Patients with Vestibular Disorders Using a Three Dimensional Eletromagnetic Sensor System. Braz. J. Otorhinolaryngol. 2012, 78, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloh, R.W.; Jacobson, K.M.; Enrietto, J.A.; Corona, S.; Honrubia, V. Balance Disorders in Older Persons: Quantification with Posturography. Otolaryngol.—Head Neck Surg. 1998, 119, 89–92. [Google Scholar] [CrossRef]
- Hong, S.K.; Park, J.H.; Kwon, S.Y.; Kim, J.-S.; Koo, J.-W. Clinical Efficacy of the Romberg Test Using a Foam Pad to Identify Balance Problems: A Comparative Study with the Sensory Organization Test. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 2741–2747. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.R.; Akinsola, O.; Chaudhari, A.M.W.; Bigelow, K.E.; Merfeld, D.M. Measuring Vestibular Contributions to Age-Related Balance Impairment: A Review. Front. Neurol. 2021, 12, 635305. [Google Scholar] [CrossRef] [PubMed]
- Edginton Bigelow, K.; Berme, N. Development of a Protocol for Improving the Clinical Utility of Posturography as a Fall-Risk Screening Tool. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panero, E.; Dimanico, U.; Artusi, C.A.; Gastaldi, L. Standardized Biomechanical Investigation of Posture and Gait in Pisa Syndrome Disease. Symmetry 2021, 13, 2237. [Google Scholar] [CrossRef]
- Rovini, E.; Maremmani, C.; Cavallo, F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Mancini, M. Objective Biomarkers of Balance and Gait for Parkinson’s Disease Using Body-Worn Sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzigalli, L.; Cremasco, M.M.; Cremona, E.; Rainoldi, A. Human Postural Adaptation to Earthly and Atypical Gravitational Environment Effects of Sport Training on Stabilometric Parameters. Adv. Anthropol. 2013, 3, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.H.; Wong, D.W.C.; Lam, W.K.; Wan, A.H.P.; Lee, W.C.C. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control Group (Healthy Volunteers) | Study Group (Vestibular Disorder) | |
---|---|---|
Inclusion criteria | CP < 30% in VNG Ability to perform posturographic evaluations | CP ≥ 0% in VNG Acute vertigo and balance problems of at least 2 weeks duration Persistent feeling of instability |
Exclusion criteria | Any abnormalities present in VNG Known neurological or other serious diseases, e.g., circulatory and musculoskeletal system | Presence of central vestibular abnormalities in oculomotor VNG tests in more than 2 tests. Musculoskeletal or orthopedic pathology interfering with proper posturography evaluation An acute or chronic hearing disorder |
Posturography Condition | Static Posturography Median (IQR) [°/s] | Mobile Posturography MediPost Median (IQR) [°/s] | p Value Wilcoxon Test | Intra-class Correlation Coefficient (ICC) [95%CI] | ||||
---|---|---|---|---|---|---|---|---|
Group | All patients (n = 103) | Control (n = 65) | Study (n = 38) | All patients (n = 103) | Control (n = 65) | Study (n = 38) | ||
Condition 1 | 0.23 (0.07) | 0.23 (0.03) | 0.26 ns (0.13) | 0.35 (0.13) | 0.35 (0.13) | 0.36 ns (0.17) | <0.001 | 0.685 * (0.087; 0.875) |
Condition 2 | 0.33 (0.13) | 0.27 (0.13) | 0.43 * (0.17) | 0.42 (0.14) | 0.37 (0.11) | 0.48 * (0.15) | <0.001 | 0.958 * (0.922; 0.976) |
Condition 3 | 0.55 (0.3) | 0.47 (0.17) | 0.78 * (0.36) | 0.55 (0.23) | 0.49 (0.15) | 0.73 * (0.39) | <0.001 | 0.958 * (0.939; 0.972) |
Condition 4 | 1.17 (1.0) | 0.97 (0.30) | 2.15 * (1.10) | 0.93 (0.67) | 0.79 (0.29) | 1.61 * (1.02) | 0.049 | 0.966 * (0.702; 0.989) |
Comp | 0.6 (0.4) | 0.50 (0.20) | 0.90 * (0.30) | 0.54 (0.29) | 0.49 (0.92) | 0.84 * (0.32) | <0.001 | 0.981 * (0.964; 0.989) |
Modified Clinical Test of Sensory Interaction on Balance Condition | Bland–Altman Coefficient [%] |
---|---|
1 | 94.17 |
2 | 95.14 |
3 | 92.23 |
4 | 95.14 |
Modified Clinical Test of Sensory Interaction on Balance | AUC (95% CI) | Proposed Cut-Off Value | AUC Difference | Comparison of ROC Curves (p Value) | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|---|---|---|---|
Condition 1 | SP | 0.679 (0.566; 0.793) | 0.27 | 0.106 | 0.067 | 36.8% | 89.2% | 66.7% | 70.7% |
MP | 0.573 (0.452; 0.692) | 0.45 | 26.3% | 93.8% | 71.4% | 68.5% | |||
Condition 2 | SP | 0.813 (0.728; 0.899) | 0.4 | 0.039 | 0.391 | 71.1% | 78.5% | 65.9% | 82.3% |
MP | 0.773 (0.675; 0.872) | 0.43 | 76.3% | 76.9% | 65.9% | 84.7% | |||
Condition 3 | SP | 0.905 (0.848; 0.961) | 0.7 | 0.035 | 0.170 | 71.1% | 93.8% | 87.1% | 84.7% |
MP | 0.870 (0.802; 0.937) | 0.58 | 76.3% | 78.5% | 67.4% | 85% | |||
Condition 4 | SP | 0.939 (0.896; 0.982) | 1.53 | −0.014 | 0.166 | 86.4% | 87.7% | 80% | 90.5% |
MP | 0.953 (0.918; 0.989) | 1.08 | 92.1% | 84.6% | 77.8% | 94.8% | |||
Composite score | SP | 0.94 (0.897; 0.983) | 0.7 | −0.014 | 0.365 | 89.5% | 84.6% | 77.3% | 93.2% |
MP | 0.954 (0.92; 0.989) | 0.61 | 89.5% | 87.7% | 81% | 93.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosiak, O.; Gawronska, A.; Janc, M.; Marciniak, P.; Kotas, R.; Zamyslowska-Szmytke, E.; Jozefowicz-Korczynska, M. Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder. Sensors 2022, 22, 2208. https://doi.org/10.3390/s22062208
Rosiak O, Gawronska A, Janc M, Marciniak P, Kotas R, Zamyslowska-Szmytke E, Jozefowicz-Korczynska M. Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder. Sensors. 2022; 22(6):2208. https://doi.org/10.3390/s22062208
Chicago/Turabian StyleRosiak, Oskar, Anna Gawronska, Magdalena Janc, Pawel Marciniak, Rafal Kotas, Ewa Zamyslowska-Szmytke, and Magdalena Jozefowicz-Korczynska. 2022. "Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder" Sensors 22, no. 6: 2208. https://doi.org/10.3390/s22062208
APA StyleRosiak, O., Gawronska, A., Janc, M., Marciniak, P., Kotas, R., Zamyslowska-Szmytke, E., & Jozefowicz-Korczynska, M. (2022). Utility of the Novel MediPost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder. Sensors, 22(6), 2208. https://doi.org/10.3390/s22062208