Quantitative Characterization of Motor Control during Gait in Dravet Syndrome Using Wearable Sensors: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings and Ethics Statement
2.2. Inclusion and Exclusion Criteria
2.3. Subjects
2.4. Data Collection
2.5. Data Processing
- -
- Fundamental frequency (FF, in Hz), calculated as the maximum of the spectral distribution of the lower back acceleration signal; in healthy mature gait, the distinctive peak is related to cadence [37].
- -
- Harmonic ratio (HR), related to rhythmicity, was calculated on trunk acceleration data along the 3 directions (vertical—V; mediolateral—ML; anteroposterior—AP), decomposing the signal components into its harmonics, as the ratio between the sum of the first 10 even and the first 10 odd harmonic multiples of the FF [34,38].
- -
- -
- Multiscale entropy (MSE), related to complexity and automaticity, was calculated as the sample entropy (SEN) of trunk acceleration components (SENv, SENml, SENap) at time scales (τ) from 1 to 6: (i) coarse-grained time series were calculated by averaging the increasing numbers of the data points in non-overlapping windows of length, τ, τ = 1:6; (ii) length of sequences to be compared, m, was fixed at 2, and tolerance for accepting matches, the radius, was fixed at 0.2 [30].
2.6. Data Analysis
- (i)
- Differences between DS and typically developing subjects (6–25 years old, considered as a single group—TD): Mann–Whitney U test, level of significance 0.05.
- (ii)
- Differences between DS subjects and specific age groups of typically developing subjects (6-, 7–8-, 9–10-, 15-, and 25-year-old subjects—6 YC, 7–8 YC, 9–10 YC, 15 YA, and 25 YA, respectively): Kruskal–Wallis test, level of significance 0.05. When a significant group effect was found, a multiple comparison test was performed to evaluate which of the analysed groups showed significant differences from DS. Dunn–Sidak correction was considered for post hoc analysis.
3. Results
3.1. Differences between DS and TD Subjects
3.2. Correlations between FIM Scores and Nonlinear Indices
3.3. Correlations between Walking Speed and Nonlinear Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheffer, I.; Nabbout, R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia 2019, 60 (Suppl. 3), S17–S24. [Google Scholar] [CrossRef]
- Brunklaus, A.; Ellis, R.; Reavey, E.; Forbes, G.H.; Zuberi, S.M. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012, 135, 2329–2336. [Google Scholar] [CrossRef] [Green Version]
- Bertuccelli, M.; Verheyen, K.; Hallemans, A.; Sander, J.W.; Ragona, F.; Bisiacchi, P.; Masiero, S.; Del Felice, A. Deconstructing Dravet syndrome neurocognitive development: A scoping review. Epilepsia 2021, 62, 874–887. [Google Scholar] [CrossRef]
- Wyers, L.; Van de Walle, P.; Hoornweg, A.; Bobescu, I.T.; Verheyen, K.; Ceulemansd, B.; Schoonjans, A.-S.; Desloovere, K.; Hallemans, A. Gait deviations in patients with dravet syndrome: A systematic review. Eur. J. Paediatr. Neurol. 2019, 23, 357–367. [Google Scholar] [CrossRef]
- Rodda, J.M.; Scheffer, I.E.; McMahon, J.; Berkovic, S.; Graham, H.K. Progressive Gait Deterioration in Adolescents with Dravet Syndrome. Arch. Neurol. 2012, 69, 873–878. [Google Scholar] [CrossRef]
- Di Marco, R.; Hallemans, A.; Bellon, G.; Ragona, F.; Piazza, E.; Granata, T.; Ceulemans, B.; Schoonjans, A.-S.; Van de Walle, P.; Darra, F.; et al. Gait abnormalities in people with Dravet syndrome: A cross-sectional multi-center study. Eur. J. Paediatr. Neurol. 2019, 23, 808–818. [Google Scholar] [CrossRef]
- Wyers, L.; Verheyen, K.; Ceulemans, B.; Schoonjans, A.-S.; Desloovere, K.; Van de Walle, P.; Hallemans, A. The mechanics behind gait problems in patients with Dravet Syndrome. Gait Posture 2021, 84, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Wyers, L.; Di Marco, R.; Zambelli, S.; Masiero, S.; Hallemans, A.; Van de Walle, P.; Desloovere, K.; Del Felice, A. Foot-floor contact pattern in children and adults with Dravet Syndrome. Gait Posture 2021, 84, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, C.; Unger, H.; Winkelmann, W.; Rosenbaum, D. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait Posture 2004, 19, 235–242. [Google Scholar] [CrossRef]
- Hallemans, A.; De Clercq, D.; Van Dongen, S.; Aerts, P. Changes in foot-function parameters during the first 5 months after the onset of independent walking: A longitudinal follow-up study. Gait Posture 2006, 23, 142–148. [Google Scholar] [CrossRef]
- Verheyen, K.; Wyers, L.; Del Felice, A.; Schoonjans, A.; Ceulemans, B.; Van de Walle, P.; Hallemans, A. Independent walking and cognitive development in preschool children with Dravet syndrome. Dev. Med. Child Neurol. 2021, 63, 472–479. [Google Scholar] [CrossRef]
- Dasgupta, P.; VanSwearingen, J.; Godfrey, A.; Redfern, M.; Montero-Odasso, M.; Sejdic, E. Acceleration Gait Measures as Proxies for Motor Skill of Walking: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 249–261. [Google Scholar] [CrossRef]
- Marcante, A.; Di Marco, R.; Gentile, G.; Pellicano, C.; Assogna, F.; Pontieri, F.E.; Spalletta, G.; Macchiusi, L.; Gatsios, D.; Giannakis, A.; et al. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease. Sensors 2020, 21, 128. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Buckley, C.; Mico-Amigo, M.E.; Kirk, C.; Dunne-Willows, M.; Mazza, C.; Shi, J.Q.; Alcock, L.; Rochester, L.; Del Din, S. Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson’s Disease: What+ Counts? IEEE Open J. Eng. Med. Biol. 2020, 1, 65–73. [Google Scholar] [CrossRef]
- Storm, F.A.; Cesareo, A.; Reni, G.; Biffi, E. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. Sensors 2020, 20, 2660. [Google Scholar] [CrossRef]
- Soangra, R.; Lockhart, T.E. Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Sensors 2018, 18, 1792. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, T.E.; Soangra, R.; Yoon, H.; Wu, T.; Frames, C.W.; Weaver, R.; Roberto, K.A. Prediction of fall risk among community-dwelling older adults using a wearable system. Sci. Rep. 2021, 11, 20976. [Google Scholar] [CrossRef]
- Tunca, C.; Pehlivan, N.; Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders. Sensors 2017, 17, 825. [Google Scholar] [CrossRef] [Green Version]
- Castiglia, S.; Tatarelli, A.; Trabassi, D.; De Icco, R.; Grillo, V.; Ranavolo, A.; Varrecchia, T.; Magnifica, F.; Di Lenola, D.; Coppola, G.; et al. Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson’s Disease. Sensors 2021, 21, 3449. [Google Scholar] [CrossRef]
- Caliandro, P.; Conte, C.; Iacovelli, C.; Tatarelli, A.; Castiglia, S.F.; Reale, G.; Serrao, M. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. Sensors 2019, 19, 5571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, D.; Nguyen, N.; Pathirana, P.N.; Horne, M.; Power, L.; Szmulewicz, D. A Random Forest Approach for Quantifying Gait Ataxia with Truncal and Peripheral Measurements Using Multiple Wearable Sensors. IEEE Sensors J. 2020, 20, 723–734. [Google Scholar] [CrossRef]
- Coates, L.; Shi, J.; Rochester, L.; Del Din, S.; Pantall, A. Entropy of Real-World Gait in Parkinson’s Disease Determined from Wearable Sensors as a Digital Marker of Altered Ambulatory Behavior. Sensors 2020, 20, 2631. [Google Scholar] [CrossRef]
- Clark, C.C.T.; Bisi, M.C.; Duncan, M.J.; Stagni, R. Technology-based methods for the assessment of fine and gross motor skill in children: A systematic overview of available solutions and future steps for effective in-field use. J. Sports Sci. 2021, 39, 1236–1276. [Google Scholar] [CrossRef] [PubMed]
- Bisi, M.; Stagni, R. Evaluation of toddler different strategies during the first six-months of independent walking: A longitudinal study. Gait Posture 2015, 41, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Dusing, S.C. Postural variability and sensorimotor development in infancy. Dev. Med. Child Neurol. 2016, 58 (Suppl. 4), 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Peng, C.-K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Bisi, M.; Stagni, R. Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline. Gait Posture 2016, 47, 37–42. [Google Scholar] [CrossRef]
- Bisi, M.; Tamburini, P.; Stagni, R. A ‘Fingerprint’ of locomotor maturation: Motor development descriptors, reference development bands and data-set. Gait Posture 2019, 68, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Bisi, M.C.; Stagni, R. Human motor control: Is a subject-specific quantitative assessment of its multiple characteristics possible? A demonstrative application on children motor development. Med. Eng. Phys. 2020, 85, 27–34. [Google Scholar] [CrossRef]
- Bisi, M.C.; Tamburini, P.; Panebianco, G.P.; Stagni, R. Nonlinear Analysis of Human Movement Dynamics Offers New Insights in the Development of Motor Control During Childhood. J. Biomech. Eng. 2018, 140, 111002. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Investig. 2006, 29, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Dodds, T.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A validation of the Functional Independence Measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Tamburini, P.; Storm, F.; Buckley, C.; Bisi, M.C.; Stagni, R.; Mazzà, C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture 2017, 59, 248–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Stergiou, N. Nonlinear Analysis for Human Movement Variability; Taylor & Francis Inc.: London, UK, 2016. [Google Scholar]
- Auvinet, B.; Berrut, G.; Touzard, C.; Moutel, L.; Collet, N.; Chaleil, D.; Barrey, E. Reference data for normal subjects obtained with an accelerometric device. Gait Posture 2002, 16, 124–134. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 2003, 18, 35–46. [Google Scholar] [CrossRef]
- Labini, F.S.; Meli, A.; Ivanenko, Y.P.; Tufarelli, D. Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture 2012, 35, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Pasciuto, I.; Bergamini, E.; Iosa, M.; Vannozzi, G.; Cappozzo, A. Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry. J. Biomech. 2017, 53, 84–89. [Google Scholar] [CrossRef]
- Riva, F.; Bisi, M.C.; Stagni, R. Gait variability and stability measures: Minimum number of strides and within-session reliability. Comput. Biol. Med. 2014, 50, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Yentes, J.M.; Raffalt, P.C. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann. Biomed. Eng. 2021, 49, 979–990. [Google Scholar] [CrossRef]
- Castiglia, S.F.; Trabassi, D.; Tatarelli, A.; Ranavolo, A.; Varrecchia, T.; Fiori, L.; Di Lenola, D.; Cioffi, E.; Raju, M.; Coppola, G.; et al. Identification of Gait Unbalance and Fallers among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum 2022. [Google Scholar] [CrossRef]
- Toebes, M.J.; Hoozemans, M.; Furrer, R.; Dekker, J.; van Dieën, J.H. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture 2012, 36, 527–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellanca, J.; Lowry, K.; VanSwearingen, J.; Brach, J.; Redfern, M. Harmonic ratios: A quantification of step to step symmetry. J. Biomech. 2013, 46, 828–831. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, W. Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 2004, 92, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D.; Donelan, J.M. Dynamic Principles of Gait and Their Clinical Implications. Phys. Ther. 2010, 90, 157–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramdani, S.; Tallon, G.; Bernard, P.L.; Blain, H. Recurrence Quantification Analysis of Human Postural Fluctuations in Older Fallers and Non-fallers. Ann. Biomed. Eng. 2013, 41, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Bernardina, B.D.; Dulac, O.; Bureau, M.; Dravet, C.; Del Zotti, F.; Roger, J. Encephalopathie myoclonique precoce avec epilepsie. Rev. D’electroencéphalogr. Neurophysiol. Clin. 1982, 12, 8–14. [Google Scholar] [CrossRef]
- Catterall, W.A.; Kalume, F.; Oakley, J.C. NaV1.1 channels and epilepsy. J. Physiol. 2010, 588, 1849–1859. [Google Scholar] [CrossRef]
Subject ID | Female/Male | Age (Years) | Height (H—cm) | Body Mass (kg) |
---|---|---|---|---|
P01 | F | 33 | 147.5 | 52.0 |
P05 | F | 16 | 159.0 | 44.5 |
P08 | F | 14 | 151.0 | 46.0 |
P11 | M | 17 | 161.0 | 65.0 |
P14 | M | 15 | 151.0 | 47.5 |
P15 | F | 23 | 124.0 | 55.0 |
P17 | M | 20 | 164.0 | 80.0 |
P18 | M | 23 | 194.5 | 79.5 |
P24 | F | 11 | 135.0 | 30.5 |
P33 | M | 9 | 136.5 | 36.0 |
P35 | F | 28 | 169.5 | 53.5 |
P36 | F | 28 | 173.5 | 54.5 |
P41 | F | 19 | 161.0 | 72.0 |
P42 | F | 17 | 150.5 | 40.0 |
P43 | M | 14 | 156.5 | 45.0 |
P44 | M | 9 | 136.0 | 28.5 |
P45 | F | 18 | 139.0 | 42.0 |
P52 | F | 29 | 152.0 | 50.0 |
P54 | F | 12 | 148.0 | 29.0 |
P55 | F | 10 | 134.5 | 36.0 |
P59 | F | 19 | 162.0 | 62.5 |
Median | - | 17 | 151 | 48 |
1st quartile | - | 14 | 141 | 41 |
3rd quartile | - | 22 | 161 | 55 |
Mean | - | 18 | 153 | 50 |
Std | - | 7 | 16 | 15 |
Abbreviation | Description | Female/Male | Age (Years) | Height (cm) | Body Mass (kg) |
---|---|---|---|---|---|
6 YC | 16 6-year-old children | 8 F/8 M | 6 ± 0 | 119 ± 4 | 23 ± 2 |
7 YC | 16 7-year-old children | 8 F/8 M | 7 ± 0 | 127 ± 5 | 29 ± 5 |
8 YC | 16 8-year-old children | 8 F/8 M | 8 ± 0 | 130 ± 5 | 29 ± 6 |
9 YC | 16 9-year-old children | 8 F/8 M | 9 ± 0 | 138 ± 6 | 34 ± 6 |
10 YC | 16 10-year-old children | 8 F/8 M | 10 ± 0 | 141 ± 5 | 37 ± 5 |
15 YA | 16 15-year-old adolescents | 8 F/8 M | 15 ± 0 | 168 ± 9 | 60 ± 13 |
25 YA | 16 25-year-old adults | 8 F/8 M | 25 ± 1 | 171 ± 9 | 64 ± 11 |
Subject ID | Speed (m/s) | Normalized Speed (%H/s) | Step Width (cm) | FIM Total Score | FIM Motor Function Subscore |
---|---|---|---|---|---|
P01 | 0.90 | 62.88 | 16 | 63 | 26 |
P05 | 0.80 | 53.44 | 8 | 104 | 30 |
P08 | N/A | N/A | N/A | 30 | 13 |
P11 | 0.50 | 29.30 | 12 | 71 | 30 |
P14 | 1.00 | 68.96 | 4 | 123 | 35 |
P15 | 0.80 | 62.13 | 12 | 35 | 12 |
P17 | 0.90 | 56.45 | 9 | 119 | 35 |
P18 | 1.50 | 76.19 | 11 | 111 | 35 |
P24 | 1.30 | 93.71 | 17 | 122 | 35 |
P33 | 0.60 | 42.27 | 11 | 77 | 25 |
P35 | 0.90 | 52.99 | 15 | 70 | 26 |
P36 | 0.90 | 52.75 | 10 | 89 | 29 |
P41 | 0.70 | 40.48 | 11 | 118 | 34 |
P42 | 1.10 | 77.02 | 6 | 120 | 35 |
P43 | 1.30 | 84.25 | 13 | 81 | 27 |
P44 | 0.70 | 51.83 | 5 | 84 | 34 |
P45 | 0.60 | 38.29 | 15 | 84 | 28 |
P52 | 0.90 | 58.99 | 7 | 123 | 35 |
P54 | 0.80 | 53.41 | 8 | 115 | 35 |
P55 | 1.00 | 75.44 | 10 | 57 | 35 |
Median | 0.90 | 56.45 | 11 | 87 | 32 |
1st quartile | 0.75 | 52.29 | 8 | 71 | 27 |
3rd quartile | 1.00 | 72.20 | 13 | 118 | 35 |
Mean | 0.91 | 59.51 | 11 | 90 | 30 |
Std | 0.26 | 16.63 | 4 | 29 | 7 |
DS | TD | |||
---|---|---|---|---|
FF | 0.88 [0.82 0.96] | 1.06 [0.97 1.14] | * DS < TD | |
HRv | 1.33 [1.13 1.53] | 2.25 [1.92 2.74] | * DS < TD | |
HRml | 1.27 [1.18 1.45] | 1.41 [1.20 1.74] | ||
HRap | 1.42 [1.13 1.49] | 2.02 [1.72 2.42] | * DS < TD | |
SEN V | tao = 1 | 0.37 [0.31 0.42] | 0.39 [0.35 0.44] | |
tao = 2 | 0.62 [0.49 0.73] | 0.60 [0.52 0.69] | ||
tao = 3 | 0.85 [0.63 0.98] | 0.78 [0.69 0.91] | ||
tao = 4 | 1.07 [0.76 1.20] | 0.92 [0.82 1.06] | ||
tao = 5 | 1.20 [0.88 1.36] | 1.05 [0.92 1.22] | ||
tao = 6 | 1.23 [1.03 1.49] | 1.13 [0.97 1.28] | ||
SEN ML | tao = 1 | 0.41 [0.39 0.51] | 0.51 [0.47 0.55] | * DS < TD |
tao = 2 | 0.71 [0.64 0.85] | 0.86 [0.79 0.95] | * DS < TD | |
tao = 3 | 0.97 [0.83 1.16] | 1.15 [1.04 1.30] | * DS < TD | |
tao = 4 | 1.16 [1.00 1.44] | 1.42 [1.26 1.54] | * DS < TD | |
tao = 5 | 1.40 [1.15 1.69] | 1.57 [1.42 1.75] | * DS < TD | |
tao = 6 | 1.54 [1.26 1.77] | 1.65 [1.46 1.85] | ||
SEN AP | tao = 1 | 0.40 [0.32 0.52] | 0.40 [0.34 0.44] | |
tao = 2 | 0.63 [0.51 0.80] | 0.60 [0.53 0.67] | ||
tao = 3 | 0.74 [0.67 0.99] | 0.76 [0.68 0.86] | ||
tao = 4 | 0.94 [0.84 1.13] | 0.88 [0.78 1.00] | ||
tao = 5 | 1.09 [0.92 1.29] | 1.00 [0.87 1.13] | ||
tao = 6 | 1.22 [1.02 1.29] | 1.06 [0.94 1.24] | ||
RQA V | RR | 10.95 [9.13 13.83] | 13.42 [12.10 15.11] | * DS < TD |
DET | 51.68 [37.15 61.82] | 77.23 [67.39 82.59] | * DS < TD | |
AvgL | 6.33 [5.42 7.34] | 9.94 [8.41 11.77] | * DS < TD | |
RQA ML | RR | 8.22 [7.76 8.71] | 7.98 [7.64 8.65] | |
DET | 47.25 [36.81 64.97] | 44.11 [37.77 49.77] | ||
AvgL | 6.11 [5.42 7.44] | 5.97 [5.72 6.49] | ||
RQA AP | RR | 13.09 [11.73 15.01] | 15.08 [13.54 16.29] | * DS < TD |
DET | 50.01 [44.36 64.93] | 74.17 [62.40 80.65] | * DS < TD | |
AvgL | 7.16 [6.29 9.30] | 7.72 [6.97 8.18] |
DS | 6 YC | 7–8 YC | 9–10 YC | 15 YA | 25 YA | |||
---|---|---|---|---|---|---|---|---|
FF | 0.88 [0.82 0.96] | 1.23 [1.16 1.35] | 1.09 [1.03 1.15] | 1.07 [1.01 1.11] | 0.98 [0.91 1.00] | 0.89 [0.85 0.95] | * (DS < 6 YC; DS < 7–8 YC; DS < 9–10 YC) | |
HRv | 1.33 [1.13 1.53] | 2.15 [1.55 2.59] | 2.21 [1.92 2.61] | 2.41 [2.12 3.03] | 1.86 [1.69 2.48] | 2.31 [2.04 2.70] | * (DS < 6 YC; DS < 7–8 YC; DS < 9–10 YC; DS < 15 YA; DS < 25 YA) | |
HRml | 1.27 [1.18 1.45] | 1.45 [1.34 1.72] | 1.38 [1.19 1.81] | 1.51 [1.19 1.89] | 1.22 [1.12 1.64] | 1.42 [1.24 1.55] | ||
HRap | 1.42 [1.13 1.49] | 1.95 [1.53 2.51] | 1.97 [1.77 2.31] | 2.16 [1.81 2.61] | 1.76 [1.62 2.29] | 2.19 [1.74 2.44] | * (DS < 6 YC; DS < 7.8 YC; DS < 9–10 YC; DS < 15 YA; DS < 25 YA) | |
SEN V | tao = 1 | 0.37 [0.31 0.42] | 0.42 [0.38 0.50] | 0.41 [0.37 0.45] | 0.39 [0.34 0.45] | 0.39 [0.35 0.43] | 0.33 [0.29 0.38] | |
tao = 2 | 0.62 [0.49 0.73] | 0.63 [0.58 0.70] | 0.60 [0.56 0.71] | 0.59 [0.52 0.71] | 0.63 [0.58 0.69] | 0.50 [0.44 0.56] | ||
tao = 3 | 0.85 [0.63 0.98] | 0.83 [0.74 0.91] | 0.80 [0.72 0.95] | 0.78 [0.69 0.93] | 0.82 [0.72 0.89] | 0.65 [0.59 0.70] | ||
tao = 4 | 1.07 [0.76 1.20] | 0.97 [0.84 1.10] | 1.00 [0.88 1.07] | 0.92 [0.87 1.06] | 1.05 [0.84 1.07] | 0.76 [0.67 0.81] | * (DS > 25 YA) | |
tao = 5 | 1.20 [0.88 1.36] | 1.13 [0.89 1.24] | 1.13 [0.98 1.22] | 1.06 [0.99 1.20] | 1.05 [0.97 1.25] | 0.83 [0.74 0.97] | * (DS > 25 YA) | |
tao = 6 | 1.23 [1.03 1.49] | 1.04 [0.92 1.25] | 1.13 [1.07 1.29] | 1.20 [1.02 1.33] | 1.16 [0.98 1.35] | 0.93 [0.79 1.06] | * (DS > 25 YA) | |
SEN ML | tao = 1 | 0.41 [0.39 0.51] | 0.58 [0.52 0.62] | 0.50 [0.48 0.55] | 0.52 [0.47 0.54] | 0.47 [0.45 0.54] | 0.51 [0.46 0.54] | * (DS < 6 YC) |
tao = 2 | 0.71 [0.64 0.85] | 0.98 [0.90 1.05] | 0.86 [0.80 0.94] | 0.86 [0.79 0.92] | 0.83 [0.78 0.91] | 0.83 [0.74 0.86] | * (DS < 6 YC) | |
tao = 3 | 0.97 [0.83 1.16] | 1.35 [1.23 1.41] | 1.17 [1.09 1.30] | 1.14 [1.05 1.25] | 1.11 [0.99 1.22] | 1.08 [0.87 1.14] | * (DS < 6 YC; DS < 7.8 YC) | |
tao = 4 | 1.16 [1.00 1.44] | 1.53 [1.49 1.72] | 1.45 [1.28 1.61] | 1.41 [1.23 1.51] | 1.36 [1.23 1.52] | 1.28 [1.06 1.42] | * (DS < 6 YC; DS < 7.8 YC) | |
tao = 5 | 1.40 [1.15 1.69] | 1.76 [1.51 1.92] | 1.64 [1.46 1.80] | 1.55 [1.42 1.63] | 1.58 [1.41 1.75] | 1.41 [1.14 1.54] | * (DS < 6 YC) | |
tao = 6 | 1.54 [1.26 1.77] | 1.72 [1.45 2.05] | 1.72 [1.58 1.91] | 1.63 [1.49 1.86] | 1.58 [1.40 1.74] | 1.48 [1.23 1.70] | ||
SEN AP | tao = 1 | 0.40 [0.32 0.52] | 0.43 [0.37 0.48] | 0.40 [0.36 0.42] | 0.41 [0.35 0.45] | 0.35 [0.32 0.38] | 0.39 [0.34 0.47] | |
tao = 2 | 0.63 [0.51 0.80] | 0.66 [0.55 0.79] | 0.61 [0.54 0.66] | 0.61 [0.54 0.68] | 0.56 [0.50 0.60] | 0.58 [0.52 0.65] | ||
tao = 3 | 0.74 [0.67 0.99] | 0.90 [0.70 1.02] | 0.79 [0.70 0.85] | 0.78 [0.69 0.85] | 0.70 [0.61 0.77] | 0.71 [0.65 0.81] | ||
tao = 4 | 0.94 [0.84 1.13] | 1.00 [0.83 1.17] | 0.90 [0.82 1.00] | 0.88 [0.79 0.99] | 0.82 [0.72 0.93] | 0.79 [0.72 0.96] | * (DS > 25 YA) | |
tao = 5 | 1.09 [0.92 1.29] | 1.15 [1.03 1.31] | 1.01 [0.93 1.13] | 0.97 [0.86 1.12] | 0.94 [0.83 1.06] | 0.86 [0.75 0.91] | * (DS > 25 YA) | |
tao = 6 | 1.22 [1.02 1.29] | 1.26 [1.06 1.56] | 1.12 [1.01 1.22] | 1.06 [0.95 1.23] | 1.01 [0.86 1.12] | 0.88 [0.76 0.99] | * (DS > 25 YA) | |
RQA V | RR | 10.95 [9.13 13.83] | 14.22 [11.86 16.83] | 13.28 [11.72 14.45] | 13.39 [12.63 15.07] | 11.91 [11.37 15.01] | 14.27 [13.60 15.37] | * (DS < 6 YC; DS < 9–10 YC; DS < 25 YA) |
DET | 51.68 [37.15 61.82] | 75.07 [63.84 83.17] | 75.86 [64.07 80.35] | 76.07 [67.21 81.03] | 73.71 [66.63 80.22] | 84.43 [80.73 87.30] | * (DS < 6 YC; DS < 7.8 YC; DS < 9–10 YC; DS < 25 YA) | |
AvgL | 6.33 [5.42 7.34] | 9.68 [8.03 11.85] | 9.33 [8.54 10.97] | 10.32 [8.68 11.74] | 9.05 [7.68 11.02] | 11.72 [10.39 12.67] | * (DS < 6 YC; DS < 7.8 YC; DS < 9–10 YC; DS < 15 YA; DS < 25 YA) | |
RQA ML | RR | 8.22 [7.76 8.71] | 7.83 [7.64 8.94] | 7.86 [7.59 8.34] | 7.98 [7.65 8.55] | 8.30 [7.88 8.63] | 8.69 [7.67 9.52] | |
DET | 47.25 [36.81 64.97] | 40.42 [30.66 45.75] | 44.11 [37.80 49.55] | 41.75 [36.65 45.76] | 45.21 [41.58 50.23] | 54.68 [48.90 59.50] | * | |
AvgL | 6.11 [5.42 7.44] | 5.80 [5.60 6.14] | 5.84 [5.72 6.19] | 5.99 [5.81 6.40] | 6.16 [5.81 6.50] | 6.86 [6.24 7.20] | * | |
RQA AP | RR | 13.09 [11.73 15.01] | 12.50 [11.15 15.23] | 15.03 [14.09 16.18] | 15.01 [13.20 15.93] | 15.82 [14.36 16.41] | 16.59 [15.14 18.00] | * (DS < 15 YA; DS < 25 YA) |
DET | 50.01 [44.36 64.93] | 52.31 [46.66 71.98] | 75.43 [64.53 80.67] | 76.47 [66.47 81.31] | 64.34 [57.21 75.33] | 83.54 [74.20 89.24] | * (DS < 7.8 YC; DS < 9–10 YC; DS < 25 YA) | |
AvgL | 7.16 [6.29 9.30] | 6.66 [6.05 7.49] | 7.68 [7.07 8.00] | 7.78 [7.07 8.11] | 7.47 [6.85 8.36] | 9.75 [8.14 10.81] | * (DS < 25 YA) |
FIM Total Score | FIM Motor Function Subscore | Speed (m/s) | Normalized Speed (%H/s) | ||
---|---|---|---|---|---|
FF | -- | -- | -- | -- | |
HRv | -- | -- | 0.57 | 0.43 | |
HRml | -- | -- | -- | -- | |
HRap | 0.62 | 0.53 | 0.56 | 0.46 | |
SEN V | tao = 1 | -- | -- | -- | -- |
tao = 2 | -- | -- | -- | -- | |
tao = 3 | -- | -- | -- | -- | |
tao = 4 | -- | -- | 0.47 | -- | |
tao = 5 | -- | -- | 0.51 | -- | |
tao = 6 | -- | -- | 0.49 | 0.48 | |
SEN ML | tao = 1 | 0.49 | -- | 0.6 | -- |
tao = 2 | 0.51 | -- | 0.72 | 0.49 | |
tao = 3 | 0.5 | 0.45 | 0.81 | 0.59 | |
tao = 4 | 0.47 | 0.43 | 0.82 | 0.62 | |
tao = 5 | -- | -- | 0.65 | -- | |
tao = 6 | -- | 0.53 | 0.76 | 0.54 | |
SEN AP | tao = 1 | -- | -- | -- | -- |
tao = 2 | -- | -- | -- | -- | |
tao = 3 | -- | -- | -- | -- | |
tao = 4 | -- | -- | -- | -- | |
tao = 5 | -- | -- | -- | -- | |
tao = 6 | -- | -- | -- | -- | |
RQA V | RR | -- | -- | -- | -- |
DET | -- | -- | -- | -- | |
AvgL | -- | -- | -- | -- | |
RQA ML | RR | -- | −0.5 | −0.8 | −0.66 |
DET | -- | -- | −0.76 | −0.65 | |
AvgL | -- | -- | −0.62 | −0.49 | |
RQA AP | RR | 0.47 | -- | -- | -- |
DET | -- | -- | -- | -- | |
AvgL | -- | -- | −0.48 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisi, M.C.; Di Marco, R.; Ragona, F.; Darra, F.; Vecchi, M.; Masiero, S.; Del Felice, A.; Stagni, R. Quantitative Characterization of Motor Control during Gait in Dravet Syndrome Using Wearable Sensors: A Preliminary Study. Sensors 2022, 22, 2140. https://doi.org/10.3390/s22062140
Bisi MC, Di Marco R, Ragona F, Darra F, Vecchi M, Masiero S, Del Felice A, Stagni R. Quantitative Characterization of Motor Control during Gait in Dravet Syndrome Using Wearable Sensors: A Preliminary Study. Sensors. 2022; 22(6):2140. https://doi.org/10.3390/s22062140
Chicago/Turabian StyleBisi, Maria Cristina, Roberto Di Marco, Francesca Ragona, Francesca Darra, Marilena Vecchi, Stefano Masiero, Alessandra Del Felice, and Rita Stagni. 2022. "Quantitative Characterization of Motor Control during Gait in Dravet Syndrome Using Wearable Sensors: A Preliminary Study" Sensors 22, no. 6: 2140. https://doi.org/10.3390/s22062140