Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1
Abstract
:1. Introduction
2. Some Basic Concepts of Morphological Filtering and Connections
2.1. Basic Notions of Morphological Filtering
2.2. Connectivity
2.3. Viscous Opening
2.4. Morphologically Connected Filtering in Viscous Lattices
2.5. Hyperconnectivity
3. Proposal of Using Hyperconnections and Viscous Transformations
3.1. Hyperconnected Opening
3.2. Hyperconnected Functions and Lower Leveling
4. Results: Brain Extraction Using Hyperconnectivity
4.1. Brain Extraction Based on the Maximum Hyperconnected Function
4.2. Brain Extraction Based on Hyperconnected Functions and Lower Leveling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalavathi, P.; Prasath, V.S. Methods on skull stripping of MRI head scan images—A review. J. Digit. Imaging 2016, 29, 365–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Singh, S.N.; Kumar, S. An innovative approach based on skull stripping for MRI images of human brain. In Proceedings of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), Noida, India, 10–11 August 2017; pp. 1–4. [Google Scholar]
- Lucena, O.; Souza, R.; Rittner, L.; Frayne, R.; Lotufo, R. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Artif. Intell. Med. 2019, 98, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Keihaninejad, S.; Heckemann, R.A.; Fagiolo, G.; Symms, M.R.; Hajnal, J.V.; Hammers, A. A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). NeuroImage 2010, 50, 1427–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carass, A.; Wheeler, M.B.; Cuzzocreo, J.; Bazin, P.L.; Bassett, S.S.; Prince, J.L. A joint registration and segmentation approach to skull stripping. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 656–659. [Google Scholar]
- Chaddad, A.; Tanougast, C. Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images. Brain Inform. 2016, 3, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hu, Y.; Li, X.; Wang, M.; Liu, C.; Yang, J.; Jin, C. Impacts of skull stripping on construction of three-dimensional T1-weighted imaging-based brain structural network in full-term neonates. Biomed. Eng. Online 2020, 19, 41. [Google Scholar] [CrossRef]
- Wadhwa, A.; Bhardwaj, A.; Verma, V.S. A review on brain tumor segmentation of MRI images. Magn. Reson. Imaging 2019, 61, 247–259. [Google Scholar] [CrossRef]
- González-Villà, S.; Oliver, A.; Valverde, S.; Wang, L.; Zwiggelaar, R.; Lladó, X. A review on brain structures segmentation in magnetic resonance imaging. Artif. Intell. Med. 2016, 73, 45–69. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Rehman, H.Z.U.; Lee, S. 3D U-Net for skull stripping in brain MRI. Appl. Sci. 2019, 9, 569. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef]
- Jenkinson, M.; Pechaud, M.; Smith, S. BET2: MR-based estimation of brain, skull and scalp surfaces. In Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto, ON, Canada, 13–16 June 2005; Volume 17, p. 167. [Google Scholar]
- Wang, L.; Zeng, Z.; Zwiggelaar, R. An Improved BET Method for Brain Segmentation. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 3221–3226. [Google Scholar] [CrossRef]
- Sara, S.; Samir, B.; Ahmed, H.; Bouchaib, C. A robust comparative study of five brain extraction algorithms (BET; BSE; McStrip; SPM2; TMBE). In Proceedings of the 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, 10–12 November 2014; pp. 632–636. [Google Scholar] [CrossRef]
- Somasundaram, K.; Kalaividya, P.A. Brain portion segmentation from Magnetic Resonance Images(MRI) of human head scan using Richardson Lucy deconvolution and intensity thresholding. In Proceedings of the 2016 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Roy, S.; Maji, P. Rough segmentation of coherent local intensity for bias induced 3-D MR brain images. Pattern Recognit. 2020, 97, 106997. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, X.; Wu, J.; Zhang, P.; Chen, Y.; Shu, H. Automatic brain tissue segmentation based on graph filter. BMC Med. Imaging 2018, 18, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front. Neurosci. 2019, 13, 585. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Du, Y.; Chen, J.; Sui, J.; Adali, T.; Pearlson, G.; Calhoun, V.D. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. Proc. IEEE. Inst. Electr. Electron. Eng. 2018, 106, 886–906. [Google Scholar] [CrossRef] [PubMed]
- Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Serra, J. Connectivity on Complete Lattices. J. Math. Imaging Vis. 1998, 9, 231–251. [Google Scholar] [CrossRef]
- Salembier, P.; Oliveras, A.; Garrido, L. Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 1998, 7, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Santillán, I.; Herrera-Navarro, A.M.; Mendiola-Santibáñez, J.D.; Terol-Villalobos, I.R. Morphological Connected Filtering on Viscous Lattices. J. Math. Imaging Vis. 2010, 36, 254–269. [Google Scholar] [CrossRef]
- Meyer, F. From Connected Operators to Levelings. In Proceedings of the Fourth International Symposium on Mathematical Morphology and Its Applications to Image and Signal Processing, Amsterdam, The Netherlands, 3–5 June 1998; Kluwer Academic Publishers: Norwell, MA, USA, 1998. ISMM98. pp. 191–198. [Google Scholar]
- Cocosco, C.A.; Kollokian, V.; Kwan, R.K.S.; Pike, G.B.; Evans, A.C. BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 1997, 5, 425. [Google Scholar]
- Heijmans, H. Morphological Image Operators; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Vincent, L. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms. IEEE Trans. Image Process. 1993, 2, 176–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, J. Image Analysis and Mathematical Morphology, Vol. II: Theoretical Advances; Academic: New York, NY, USA, 1988. [Google Scholar]
- Serra, J.P.F. Viscous Lattices. J. Math. Imaging Vis. 2005, 22, 269–282. [Google Scholar] [CrossRef]
- Reinke, A.; Eisenmann, M.; Tizabi, M.D.; Sudre, C.H.; Rädsch, T.; Antonelli, M.; Arbel, T.; Bakas, S.; Cardoso, M.J.; Cheplygina, V.; et al. Common limitations of image processing metrics: A picture story. arXiv 2021, arXiv:2104.05642. [Google Scholar]
- Eskildsen, S.F.; Coupé, P.; Fonov, V.; Manjón, J.V.; Leung, K.K.; Guizard, N.; Wassef, S.N.; Østergaard, L.R.; Collins, D.L.; Initiative, A.D.N.; et al. BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage 2012, 59, 2362–2373. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, K.; Noorizadeh, N. Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J. Biomed. Phys. Eng. 2014, 4, 13. [Google Scholar] [PubMed]
- Somasundaram, K.; Kalaividya, P.; Kalaiselvi, T.; Krishnamoorthy, R.; Praveenkumar, S. Edge detection using Chebyshev’s orthogonal polynomial and brain extraction from magnetic resonance images of human head. Int. J. Imaging Syst. Technol. 2019, 29, 110–120. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Zhu, Z.; Li, H. An automated and simple method for brain MR image extraction. Biomed. Eng. Online 2011, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Zhang, W.; Wang, Y.; Chen, Z. Brain extraction from cerebral MRI volume using a hybrid level set based active contour neighborhood model. Biomed. Eng. Online 2013, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Mendiola-Santibañez, J.D.; Gallegos-Duarte, M.; Arias-Estrada, M.O.; Santillán-Méndez, I.M.; Rodríguez-Reséndiz, J.; Terol-Villalobos, I.R. Sequential application of viscous opening and lower leveling for three-dimensional brain extraction on magnetic resonance imaging T1. J. Electron. Imaging 2014, 23, 033010. [Google Scholar] [CrossRef] [Green Version]
- Galdames, F.J.; Jaillet, F.; Perez, C.A. An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J. Neurosci. Methods 2012, 206, 103–119. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Zhou, X.; Chen, Z.; Yang, S. Brain Extraction Using Active Contour Neighborhood-Based Graph Cuts Model. Symmetry 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
Volume | BET Jaccard | BET Dicce | MHF Jaccard | MHF Dice |
---|---|---|---|---|
IBSR1_001 | 0.7949 | 0.8857 | 0.9031 | 0.9491 |
IBSR1_002 | 0.9091 | 0.9524 | 0.9267 | 0.962 |
IBSR1_004 | 0.8539 | 0.9212 | 0.8318 | 0.9082 |
IBSR1_005 | 0.4721 | 0.6414 | 0.7281 | 0.8427 |
IBSR1_006 | 0.5335 | 0.6958 | 0.7981 | 0.8877 |
IBSR1_007 | 0.879 | 0.9356 | 0.9441 | 0.9713 |
IBSR1_008 | 0.7587 | 0.8628 | 0.9359 | 0.9669 |
IBSR1_011 | 0.8444 | 0.9157 | 0.8972 | 0.9458 |
IBSR1_012 | 0.813 | 0.8968 | 0.88 | 0.9362 |
IBSR1_013 | 0.873 | 0.9403 | 0.8822 | 0.9374 |
IBSR1_015 | 0.3976 | 0.569 | 0.707 | 0.8284 |
IBSR1_016 | 0.6575 | 0.7933 | 0.9115 | 0.9537 |
IBSR1_017 | 0.673 | 0.8045 | 0.9182 | 0.9573 |
IBSR1_100 | 0.9085 | 0.952 | 0.9337 | 0.9657 |
IBSR1_110 | 0.9085 | 0.952 | 0.916 | 0.9562 |
IBSR1_111 | 0.8233 | 0.9031 | 0.8954 | 0.9448 |
IBSR1_112 | 0.8347 | 0.9099 | 0.9151 | 0.9557 |
IBSR1_191 | 0.9243 | 0.9607 | 0.9406 | 0.9694 |
IBSR1_202 | 0.9082 | 0.9519 | 0.9324 | 0.965 |
IBSR1_205 | 0.9085 | 0.952 | 0.9347 | 0.9663 |
IBSR2_1 | 0.7802 | 0.8765 | 0.8392 | 0.9126 |
IBSR2_2 | 0.8112 | 0.8958 | 0.9843 | 0.9754 |
IBSR2_3 | 0.8611 | 0.9254 | 0.9432 | 0.9943 |
IBSR2_4 | 0.8336 | 0.9092 | 0.9698 | 0.9847 |
IBSR2_5 | 0.7868 | 0.8807 | 0.948 | 0.9733 |
IBSR2_6 | 0.7847 | 0.8794 | 0.873 | 0.9322 |
IBSR2_7 | 0.8113 | 0.8958 | 0.8404 | 0.9133 |
IBSR2_8 | 0.7787 | 0.8756 | 0.89 | 0.93 |
IBSR2_9 | 0.8108 | 0.8955 | 0.8895 | 0.9415 |
IBSR2_10 | 0.7099 | 0.8303 | 0.7685 | 0.8691 |
IBSR2_11 | 0.7861 | 0.8802 | 0.7865 | 0.8805 |
IBSR2_12 | 0.7798 | 0.8763 | 0.8855 | 0.9393 |
IBSR2_13 | 0.7912 | 0.8834 | 0.9548 | 0.9769 |
IBSR2_14 | 0.8082 | 0.894 | 0.957 | 0.978 |
IBSR2_15 | 0.8206 | 0.9014 | 0.92 | 0.9583 |
IBSR2_16 | 0.8385 | 0.9122 | 0.9359 | 0.9669 |
IBSR2_17 | 0.8171 | 0.8993 | 0.9256 | 0.9614 |
IBSR2_18 | 0.8067 | 0.893 | 0.8556 | 0.9222 |
Volume | HLL Jaccard | HLL Dice | Volume | HLL Jaccard | HLL Dice |
---|---|---|---|---|---|
IBSR1_001 | 0.9255 | 0.9613 | IBSR2_1 | 0.9077 | 0.9516 |
IBSR1_002 | 0.8981 | 0.9463 | IBSR2_2 | 0.94 | 0.9691 |
IBSR1_004 | 0.9076 | 0.9515 | IBSR2_3 | 0.9564 | 0.9777 |
IBSR1_005 | 0.8678 | 0.9292 | IBSR2_4 | 0.9329 | 0.9653 |
IBSR1_006 | 0.88 | 0.9361 | IBSR2_5 | 0.909 | 0.9523 |
IBSR1_007 | 0.9176 | 0.957 | IBSR2_6 | 0.9306 | 0.964 |
IBSR1_008 | 0.9039 | 0.95 | IBSR2_7 | 0.8855 | 0.9393 |
IBSR1_011 | 0.9326 | 0.9651 | IBSR2_8 | 0.847 | 0.917 |
IBSR1_012 | 0.8976 | 0.946 | IBSR2_9 | 0.825 | 0.9044 |
IBSR1_013 | 0.9235 | 0.9602 | IBSR2_10 | 0.8483 | 0.9179 |
IBSR1_015 | 0.924 | 0.9606 | IBSR2_11 | 0.7785 | 0.8754 |
IBSR1_016 | 0.9133 | 0.9546 | IBSR2_12 | 0.83 | 0.907 |
IBSR1_017 | 0.9284 | 0.9629 | IBSR2_13 | 0.9511 | 0.9749 |
IBSR1_100 | 0.9433 | 0.978 | IBSR2_14 | 0.9523 | 0.9755 |
IBSR1_110 | 0.9313 | 0.964 | IBSR2_15 | 0.934 | 0.9645 |
IBSR_111 | 0.905 | 0.9501 | IBSR2_16 | 0.9368 | 0.9673 |
IBSR_112 | 0.9037 | 0.95 | IBSR2_17 | 0.9173 | 0.9568 |
IBSR_191 | 0.945 | 0.971 | IBSR2_18 | 0.9478 | 0.9732 |
IBSR_202 | 0.9262 | 0.962 | |||
IBSR_205 | 0.935 | 0.9663 |
Volume | MFL Jaccard | MFL Dice |
---|---|---|
A00028185 | 0.9669 | 0.9832 |
A00028352 | 0.9263 | 0.9617 |
A00032875 | 0.8360 | 0.9107 |
A00033747 | 0.8775 | 0.9348 |
A00034854 | 0.9279 | 0.9626 |
A00035072 | 0.9654 | 0.9824 |
A00035827 | 0.9653 | 0.9823 |
A00035840 | 0.9678 | 0.9836 |
A00037112 | 0.9653 | 0.9823 |
A00037511 | 0.8883 | 0.9409 |
Method | Dice Average | Jaccard Average | Volumes Number |
---|---|---|---|
Somasundaram et al. [35] | 0.9068 | 0.8321 | 20 |
Zhang et al. [36] | 0.960 | 0.923 | 10 |
Jiang et al. [37](ACMN One) | 0.95 | 0.905 | 38 |
Mendiola et al. [38] (Equation (9)) | 0.9645 | 0.9295 | 38 |
Galdames et al. [39] | 0.950 | 0.905 | 18 |
SPM8 Seg [34] | 0.8 | 0.888 | 20 |
SPM8 VBM [34] | 0.79 | 0.88 | 20 |
SPM8-NewSeg [34] | 0.81 | 0.89 | 20 |
FSL [34] | 0.67 | 0.89 | 20 |
Brainsuite [34] | 0.74 | 0.89 | 20 |
MHF method applied to 10 volumes of NFBS | 0.96 | 0.92 | 10 |
MHF method | 0.9416 | 0.863 | 38 |
BET | 0.869 | 0.784 | 38 |
HLL method | 0.951 | 0.9089 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Orta, C.; Mendiola-Santibañez, J.D.; Ibrahimi, D.; Rodríguez-Reséndiz, J.; Díaz-Florez, G.; Olvera-Olvera, C.A. Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1. Sensors 2022, 22, 1378. https://doi.org/10.3390/s22041378
Paredes-Orta C, Mendiola-Santibañez JD, Ibrahimi D, Rodríguez-Reséndiz J, Díaz-Florez G, Olvera-Olvera CA. Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1. Sensors. 2022; 22(4):1378. https://doi.org/10.3390/s22041378
Chicago/Turabian StyleParedes-Orta, Carlos, Jorge Domingo Mendiola-Santibañez, Danjela Ibrahimi, Juvenal Rodríguez-Reséndiz, Germán Díaz-Florez, and Carlos Alberto Olvera-Olvera. 2022. "Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1" Sensors 22, no. 4: 1378. https://doi.org/10.3390/s22041378
APA StyleParedes-Orta, C., Mendiola-Santibañez, J. D., Ibrahimi, D., Rodríguez-Reséndiz, J., Díaz-Florez, G., & Olvera-Olvera, C. A. (2022). Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1. Sensors, 22(4), 1378. https://doi.org/10.3390/s22041378