Capacitive Photodetector Thin-Film Cells of Cu-As2S3-Cu as Revealed by Dielectric Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. The 3D-Printed Mask Design
2.2. Deposition of Thin-Film Cu-As2S3-Cu Heterostructures
3. Results and Discussion
3.1. Morphology Studies by Scanning Electron Microscopy (SEM)
3.2. Dielectric Spectroscopy (DS) Measurements
3.2.1. Effect of DC Voltage Polarization Cycles
3.2.2. Effect of Illumination Cycles
3.2.3. Effect of Simultaneously Applied Light and Voltage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zakery, A.; Elliott, S.R. Optical properties and applications of chalcogenide glasses: A review. J. Non-Cryst. Solids 2003, 330, 1–12. [Google Scholar] [CrossRef]
- Lőrinczi, A.; Popescu, M.; Sava, F.; Velea, A.; Simandan, I.-D. Silver doped As2S3 chalcogenide films: A diffusion study. Phys. Status Solidi C 2011, 8, 2617. [Google Scholar] [CrossRef]
- Sava, F.; Popescu, M.; Lőrinczi, A.; Velea, A. Possible mechanism of Ag photodiffusion in a-As2S3 thin films. Phys. Status Solidi B 2013, 250, 999–1003. [Google Scholar] [CrossRef]
- Shenoy, R.S.; Burr, G.W.; Virwani, K.; Jackson, B.; Padilla, A.; Narayanan, P.; Rettner, C.T.; Shelby, R.M.; Bethune, D.S.; Raman, K.V.; et al. MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar memory arrays. Semicond. Sci. Technol. 2014, 29, 104005. [Google Scholar] [CrossRef]
- Martin, T.P. Arsenic sulfide clusters. Solid State Commun. 1983, 47, 111–114. [Google Scholar] [CrossRef]
- Billes, F.; Mitsa, V.; Fejes, I.; Mateleshko, N.; Fejsa, I. Calculation of the vibrational spectra of arsenic sulfide clusters. J. Mol. Struct. 1999, 513, 109–115. [Google Scholar] [CrossRef]
- Georgiev, D.G.; Boolchand, P.; Jackson, K.A. Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag. 2003, 83, 2941–2953. [Google Scholar] [CrossRef]
- Popescu, M.; Sava, F.; Lőrinczi, A. A new model for the structure of chalcogenide glasses: The closed cluster model. J. Non-Cryst. Solids 2009, 355, 1815–1819. [Google Scholar] [CrossRef]
- Holomb, R.; Mitsa, V.; Johansson, P.; Veres, M. Boson peak in low-frequency Raman spectra of AsxS100-x glasses: Nanocluster contribution. Phys. Status Solidi C 2010, 7, 885–888. [Google Scholar]
- Popescu, A.A.; Savastru, D.; Ciobanu, M.; Miclos, S.; Dolghier, V.T. Mass-spectrometric studies of vitreous As2S3. J. Optoelectron. Adv. Mater. 2011, 13, 1193–1198. [Google Scholar]
- Wright, A.C.; Aitken, B.G.; Cuello, G.; Haworth, R.; Sinclair, R.N.; Stewart, J.R.; Taylor, J.W. Neutron studies of an inorganic plastic glass. J. Non-Cryst. Solids 2011, 357, 2502–2510. [Google Scholar] [CrossRef]
- Kalkan, B.; Sonneville, C.; Martinet, C.; Champagnon, B.; Aitken, B.G.; Clark, S.M.; Sen, S. Hysteretically reversible phase transition in a molecular glass. J. Chem. Phys. 2012, 137, 224503. [Google Scholar] [CrossRef] [PubMed]
- Shewmon, P.G. Diffusion in Solids; McGraw-Hill Book Company: New York, NY, USA, 1963; p. 166. [Google Scholar]
- Preis, W.; Bqrgermeister, A.; Sitte, W.; Supancic, P. Bulk and grain boundary resistivities of donor-doped barium titanate ceramics. Solid State Ionics 2004, 173, 69–75. [Google Scholar] [CrossRef]
- Maia, L.F.; Rodrigues, A.C.M. Electrical conductivity and relaxation frequency of lithium borosilicate glasses. Solid State Ionics 2004, 168, 87–92. [Google Scholar] [CrossRef]
- Dhak, P.; Dhak, D.; Das, M.; Pramanik, K.; Pramanik, P. Impedance spectroscopy study of LaMnO3 modified BaTiO3 ceramics. Mater. Sci. Eng. B 2009, 164, 165–171. [Google Scholar] [CrossRef]
- Moralesa, J.C.R.; Lopez, D.M.; Vazqueza, J.C.; Nunez, P.; Irvine, J.T.S. Application of an alternative representation to identify models to fit impedance spectra. Solid State Ionics 2005, 176, 2011–2022. [Google Scholar]
- Goldenblum, A.; Stancu, V.; Buda, M.; Iordache, G.; Pintilie, I.; Negrila, C.; Botila, T. Capacitance-voltage characteristics of heterostructures with high leakage currents. J. Appl. Phys. 2008, 103, 056107. [Google Scholar] [CrossRef]
- Heo, K.-J.; Kim, H.-S.; Lee, J.-Y.; Kim, S.-J. Filamentary Resistive Switching and Capacitance-Voltage Characteristics of the a-IGZO/TiO2 Memory. Sci. Rep. 2020, 10, 9276. [Google Scholar] [CrossRef]
- Padovani, A.; Kaczer, B.; Pešić, M.; Belmonte, A.; Popovici, M.; Nyns, L.; Linten, D.; Afanas’ev, V.V.; Shlyakhov, I.; Lee, Y.; et al. A Sensitivity Map-Based Approach to Profile Defects in MIM Capacitors From I–V, C–V, and G–V Measurements. IEEE Trans. Electron. Devices 2019, 66, 1892–1898. [Google Scholar] [CrossRef]
- Bredar, A.R.C.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Anthi, J.; Kolivoška, V.; Holubová, B.; Vaisocherová-Lísalová, H. Probing polymer brushes with electrochemical impedance spectroscopy: A mini review. Biomater. Sci. 2021, 9, 7379–7391. [Google Scholar] [CrossRef] [PubMed]
- Kremer, F.; Schönhals, A. (Eds.) Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Gremany, 2003. [Google Scholar]
- Dyre, J.C.; Maass, P.; Roling, B.; Sidebottom, L.D. Fundamental questions relating to ion conduction in disordered solids. Rep. Prog. Phys. 2009, 72, 046501. [Google Scholar] [CrossRef]
- Jonscher, A.K. The universal dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Allen, M.; Chen, W.; Wang, C. 3D Printing Standards and Verification Services. Available online: http://scet.berkeley.edu/wp-content/uploads/AIR-2016-3D-Printing.pdf (accessed on 15 July 2021).
- Beltrán, H.; Prades, M.; Maso, N.; Cordoncillo, E.; West, A.R. Enhanced Conductivity and Nonlinear Voltage–Current Characteristics of Nonstoichiometric BaTiO3 Ceramics. J. Am. Ceram. Soc. 2011, 94, 2951–2962. [Google Scholar] [CrossRef] [Green Version]
- Ganea, C.P.; Manaila-Maximean, D. Liquid crystal/copolymer-clay nanostructured systems: Contribution to the conductivity of the electrode polarization. Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73, 209–216. [Google Scholar]
- Manaila-Maximean, D.; Rosu, C. Influence of polarizing electric field on electrical and optical properties of PDLC films. Mol. Cryst. Liq. Cryst. 2004, 413, 9–19. [Google Scholar] [CrossRef]
- Kellar, E.J.C.; Williams, G.; Grongauz, V.; Yitzchaik, S. Dielectric relaxation spectroscopy and molecular dynamics of a liquid-crystalline polyacrylate containing spiropyran groups. J. Mater. Chem. 1991, 1, 331–337. [Google Scholar] [CrossRef]
- Gainaru, C.; Böhmer, R.; Williams, G. Ion sweeping in conducting dielectric materials. Eur. Phys. J. B 2010, 75, 209–216. [Google Scholar] [CrossRef]
- Ozdemir, O.; Tatar, B.; Ylmazer, D.; Gokdemir, P.; Kutlu, K. Correlation of DC and AC electrical properties of Al/p-Si structure by I–V–T and C(G/ω)–V–T measurements. Mater. Sci. Semicond. Process. 2009, 12, 133–141. [Google Scholar] [CrossRef]
- Yadav, P.; Tripathi, B.; Pandey, K.; Kumar, M. Investigating the charge transport kinetics in poly-crystalline silicon solar cells for low-concentration illumination by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2015, 133, 105–112. [Google Scholar] [CrossRef]
- Shimakawa, K.; Ganjoo, A.; Hishikawa, N. Dynamics of photo-transport in a-As2Se3: Ac loss approach. J. Non-Cryst. Solids 2002, 299–302, 1002–1007. [Google Scholar] [CrossRef]
- Kolomiets, B.T.; Lyubin, V.M. Photoelectric phenomena in amorphous chalcogenide semiconductors. Phys. Status Solidi 1973, 17, 11–46. [Google Scholar] [CrossRef]
- Ryvkin, S.M.; Shilmak, I.S. A doped highly compensated crystal semiconductor as a model of amorphous semiconductors. Phys. Status Solidi 1973, 16, 515. [Google Scholar] [CrossRef]
- Fuhs, W.; Meyer, D. Recombination in amorphous arsenic triselenide. Phys. Status Solidi 1974, 24, 275. [Google Scholar] [CrossRef]
- Onari, S.; Yamamoto, K.; Kitahara, T.; Arai, T. Photoconductive Properties of Amorphous As-Se System. Jpn. J. Appl. Phys. 1980, 19, 1083. [Google Scholar] [CrossRef]
- Pal, U.; Saha, S.; Datta, S.K.; Chaudhuri, A.K. On the mechanism of long-term relaxation in polycrystalline cadmium telluride and zinc telluride films. Semicond. Sci. Technol. 1990, 5, 429. [Google Scholar] [CrossRef]
- Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient. J. Appl. Phys. 2017, 121, 124301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganea, P.; Socol, G.; Zamfira, S.; Creţu, N.; Matei, E.; Lőrinczi, A. Capacitive Photodetector Thin-Film Cells of Cu-As2S3-Cu as Revealed by Dielectric Spectroscopy. Sensors 2022, 22, 1143. https://doi.org/10.3390/s22031143
Ganea P, Socol G, Zamfira S, Creţu N, Matei E, Lőrinczi A. Capacitive Photodetector Thin-Film Cells of Cu-As2S3-Cu as Revealed by Dielectric Spectroscopy. Sensors. 2022; 22(3):1143. https://doi.org/10.3390/s22031143
Chicago/Turabian StyleGanea, Paul, Gabriel Socol, Sorin Zamfira, Nicolae Creţu, Elena Matei, and Adam Lőrinczi. 2022. "Capacitive Photodetector Thin-Film Cells of Cu-As2S3-Cu as Revealed by Dielectric Spectroscopy" Sensors 22, no. 3: 1143. https://doi.org/10.3390/s22031143
APA StyleGanea, P., Socol, G., Zamfira, S., Creţu, N., Matei, E., & Lőrinczi, A. (2022). Capacitive Photodetector Thin-Film Cells of Cu-As2S3-Cu as Revealed by Dielectric Spectroscopy. Sensors, 22(3), 1143. https://doi.org/10.3390/s22031143