Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications
Abstract
:1. Introduction
2. Principle of SM Using a Novel Active Transmitter Detection Scheme with SSD
2.1. System Architecture
2.2. Digital Implementation of SM with SSD
2.3. The Novel Active Transmitter Detection Scheme
2.3.1. Signal Pre-Distortion Technique
2.3.2. Power-Based Statistical Method for Active Transmitter Detection
3. Experimental Setup and Results
3.1. Experimental Setup
3.2. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Koonen, T. Indoor optical wireless systems: Technology, trends, and applications. J. Light. Technol. 2017, 36, 1459–1467. [Google Scholar] [CrossRef]
- Hu, F.; Chen, S.; Zhang, Y.; Li, G.; Zou, P.; Zhang, J.; Shen, C.; Zhang, X.; Hu, J.; Zhang, J.; et al. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers. PhotoniX 2021, 2, 16. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 14–23. [Google Scholar]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef] [Green Version]
- Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A prospective look: Key enabling technologies, applications and open research topics in 6G networks. IEEE Access 2020, 8, 174792–174820. [Google Scholar] [CrossRef]
- Dogra, A.; Jha, R.K.; Jain, S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access 2020, 9, 67512–67547. [Google Scholar] [CrossRef]
- Berenguer, P.W.; Hellwig, P.; Schulz, D.; Hilt, J.; Kleinpeter, G.; Fischer, J.K.; Jungnickel, V. Real-time optical wireless mobile communication with high physical layer reliability. J. Light. Technol. 2019, 37, 1638–1646. [Google Scholar] [CrossRef]
- Zheng, L.; Tse, D.N.C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory 2003, 49, 1073–1096. [Google Scholar] [CrossRef] [Green Version]
- Fath, T.; Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 2012, 61, 733–742. [Google Scholar] [CrossRef]
- Renzo, M.D.; Haas, H.; Ghrayeb, A.; Sugiura, S.; Hanzo, L. Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proc. IEEE 2013, 102, 56–103. [Google Scholar] [CrossRef]
- Basar, E.; Aygölü, U.; Panayirci, E.; Poor, H.V. New trellis code design for spatial modulation. IEEE Trans. Wirel. Commun. 2011, 10, 2670–2680. [Google Scholar] [CrossRef]
- Koca, M.; Sari, H. Bit-interleaved coded spatial modulation. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sydney, NSW, Australia, 9–12 September 2012. [Google Scholar]
- Yang, Z.; Liang, C.; Xu, X.; Ma, X. Block Markov superposition transmission with spatial modulation. IEEE Wirel. Commun. Lett. 2014, 3, 565–568. [Google Scholar] [CrossRef]
- Koca, M.; Sari, H. Precoding for spatial modulation against correlated fading channels. IEEE Trans. Wirel. Commun. 2018, 17, 5857–5870. [Google Scholar] [CrossRef]
- Cao, Y.; Ohtsuki, T. Orthogonality structure designs for generalized precoding aided spatial modulation. IEEE Wirel. Commun. Lett. 2019, 8, 1406–1409. [Google Scholar] [CrossRef]
- Renzo, M.D.; Haas, H. On transmit diversity for spatial modulation MIMO: Impact of spatial constellation diagram and shaping filters at the transmitter. IEEE Trans. Veh. Technol. 2013, 62, 2507–2531. [Google Scholar] [CrossRef]
- Boutros, J.; Viterbo, E. Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel. IEEE Trans. Inf. Theory 1998, 44, 1453–1467. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Xiao, Y.; Xiao, L.; Yang, P.; Lei, X.; Xiang, W. Space-time block coded rectangular differential spatial modulation: System design and performance analysis. IEEE Trans. Commun. 2019, 67, 6586–6597. [Google Scholar] [CrossRef]
- Althunibat, S.; Mesleh, R. Enhancing spatial modulation system performance through signal space diversity. IEEE Commun. Lett. 2018, 22, 1136–1139. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Do we really need OSTBCs for free-space optical communication with direct detection? IEEE Trans. Wirel. Commun. 2008, 7, 4445–4448. [Google Scholar] [CrossRef]
- Song, T.; Wang, K.; Nirmalathas, A.; Lim, C.; Wong, E.; Alameh, K. Demonstration of Optical Wireless Communications Using Spatial Modulation with Signal Space Diversity. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019. [Google Scholar]
- Song, T.; Lim, C.; Nirmalathas, A.; Wang, K. Optical Wireless Communications Using Signal Space Diversity with Spatial Modulation. Photonics 2021, 8, 468. [Google Scholar] [CrossRef]
- Song, T.; Wong, E.; Nirmalathas, A.; Alameh, K.; Lim, C.; Wang, K. Novel Spatial Modulation Channel Index Detection in Optical Wireless Communications with Signal Space Diversity. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020. [Google Scholar]
- Özyurt, S.; Kucur, O. Performance of OFDM with signal space diversity using subcarrier coordinate interleaving. IEEE Trans. Veh. Technol. 2018, 67, 10134–10138. [Google Scholar] [CrossRef]
- Bamiedakis, N.; Penty, R.V.; White, I.H. Carrierless amplitude and phase modulation in wireless visible light communication systems. Philos. Trans. R. Soc. A 2020, 378, 20190181. [Google Scholar] [CrossRef]
- Jin, C.; Shevchenko, N.A.; Li, Z.; Popov, S.; Chen, Y.; Xu, T. Nonlinear coherent optical systems in the presence of equalization enhanced phase noise. J. Light. Technol. 2021, 39, 4646–4653. [Google Scholar] [CrossRef]
Device Name | Model | Parameters |
---|---|---|
Waveform generator | Tektronix AWG 7102 | 10 GS/s 4-CAP (oversampling factor = 4) Vpp = 1 V Sample length = 20,000 |
Directly modulated laser (DML) | Gooch and Housego EM657 | 1549.6 nm and 1550.3 nm |
Optical delay line | General Photonics Corp. VariDelayTM | 0.2 cm (13.3 ps) |
Attenuator | EigenLight power monitor 420 WDM | Maximum reading = 3.5 dBm |
Photodetector | Discovery Semiconductor Inc. DSC-R402 | DC Responsivity @ 1550 nm: 0.84 A/W −3 dB Bandwidth: 10 GHz |
Oscilloscope | Tektronix TDS6154C | 40 GS/s Oversampling factor = 4 Record length = 200,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Nirmalathas, A.; Lim, C. Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications. Sensors 2022, 22, 9014. https://doi.org/10.3390/s22229014
Song T, Nirmalathas A, Lim C. Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications. Sensors. 2022; 22(22):9014. https://doi.org/10.3390/s22229014
Chicago/Turabian StyleSong, Tingting, Ampalavanapillai Nirmalathas, and Christina Lim. 2022. "Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications" Sensors 22, no. 22: 9014. https://doi.org/10.3390/s22229014
APA StyleSong, T., Nirmalathas, A., & Lim, C. (2022). Demonstration of Spatial Modulation Using a Novel Active Transmitter Detection Scheme with Signal Space Diversity in Optical Wireless Communications. Sensors, 22(22), 9014. https://doi.org/10.3390/s22229014