VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Costello, F. The afferent visual pathway: Designing a structural-functional paradigm of multiple sclerosis. ISRN Neurol. 2013, 2013, 134858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leocani, L.; Guerrieri, S.; Comi, G. Visual evoked potentials as a biomarker in multiple sclerosis and asociated optic neuritis. J. Neuro-Ophthalmol. 2018, 38, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.W. Multiple sclerosis: Update in diagnosis and review of prognostic factors. Mayo Clin. Proc. 1989, 64, 577–586. [Google Scholar] [CrossRef]
- Yang, E.B.; Hood, D.C.; Rodarte, C.; Zhang, X.; Odel, J.G.; Behrens, M.M. Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Investig. Ophtalmol. Vis. Sci. 2007, 48, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Compston, A. Mechanisms of axonal-glial injury of the optic nerve. Eye 2004, 18, 1182–1187. [Google Scholar] [CrossRef] [Green Version]
- Rasband, M.N.; Trimmer, J.S.; Schwarz, T.L.; Levinson, S.R.; Ellisman, M.H.; Schachner, M.; Shrager, P. Potassium channel distribution, clustering, and function in remyelinating rat axons. J. Neurosci. 1998, 18, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Werring, D.J.; Bullmore, E.T.; Toosy, A.T.; Miller, D.H.; Barker, G.J.; MacManus, D.G.; Brammer, M.J.; Giampietro, V.P.; Brusa, A.; Brex, P.A.; et al. Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: A functional magnetic resonance imaging study. J. Neurol. Neurosurg. Psychiatry 2000, 68, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Brusa, A.; Jones, S.J.; Plant, G.T. Long term remyelination after optic neuritis: A 2-year visual evoked potential and psychophysical serial study. Brain 2001, 124, 468–479. [Google Scholar] [CrossRef] [Green Version]
- Lucchineti, C.F.; Rodriguez, M. The controversy surrounding the pathogenesis of the multiple sclerosis lesions. Mayo Clin. Proc. 1997, 31, 665–678. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Q.; Hu, P.H.; Zhong, Y.L.; Zhang, Y.; Wei, R.; Xu, T.T.; Shao, Y.; Oculopathy fMRI study group. White and gray matter volume changes and correlation with visual evoked potential in patients with optic neuritis: A voxel-based morphometry study. Med. Sci. Monit. 2016, 22, 1115–1123. [Google Scholar] [CrossRef]
- Klistorner, A.; Graham, S.; Fraser, C.; Garrick, R.; Nguyen, T.; Paine, M.; O’Day, J.; Grigg, J.; Arvind, H.; Billson, F.A. Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4549–4556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simo, M.; Barsi, P.; Aranyl, Z. Predictive role of evoked potential examinations in patients with clinically isolated optic neuritis in light of the revised McDonald criteria. Mult. Scler. 2008, 14, 472–478. [Google Scholar] [CrossRef]
- Filippini, G.; Comi, G.C.; Cosi, V.; Bevilacqua, L.; Ferrarini, M.; Martinelli, V.; Bergamaschi, R.; Filippi, M.; Citterio, A.; D’Incerti, L.; et al. Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J. Neurol. 1994, 241, 132–137. [Google Scholar] [CrossRef]
- Rotstein, D.L.; Healy, B.C.; Malik, M.T.; Chitnis, T.; Weiner, H.L. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015, 72, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Pandit, L. No Evidence of Disease Activity (NEDA) in Multiple Sclerosis—Shifting the Goal Posts. Ann. Indian Acad. Neurol. 2019, 22, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Historical and clinical perspectives of the expanded disability status scale. Neuroepidemiology 2008, 31, 1–9. [Google Scholar] [CrossRef]
- Kallmann, B.A.; Fackelmann, S.; Toyka, K.V.; Rieckmann, P.; Reiners, K. Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult. Scler. 2006, 12, 58–65. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Medin, J.; Khan, N.; Korn, J.R.; Lathi, E.; Silversteen, J.; Calkwood, J.; Silva, D.; Zivadinov, R.; MS-MRIUS Study Group. Assessing ‘No Evidence of Disease Activity’ status in patients with relapsing-remitting multiple sclerosis receiving Fingolimod in routine clinical practice: A Retrospective Analysis of the Multiple Sclerosis Clinical and Magnetic Resonance Imaging Outcomes in the USA (MS-MRIUS) Study. CNS Drugs 2018, 32, 75–84. [Google Scholar]
- Kappos, L.; De Stefano, N.; Freedman, M.S.; Cree, B.A.; Radue, E.W.; Sprenger, T.; Sormani, M.P.; Smith, T.; Häring, D.A.; Piani Meier, D.; et al. Inclusion of brain volume in a revised measure of: No evidence of disease activity (NEDA-4) in relapsing-remitting multiple sclerosis. Mult. Scler. 2016, 22, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Mayssam, E.N.; Eid, C.; Khoury, J.S.; Hannoun, S. “No Evidence of Disease Activity”: Is it an aspirational therapeutic goal in multiple sclerosis? Mult. Scler. Relat. Disord. 2020, 40, 101935. [Google Scholar] [CrossRef] [PubMed]
- Celesia, G.G. Evoked potential techniques in the evaluation of visual function. J. Clin. Neurophysiol. 1984, 1, 55–76. [Google Scholar] [CrossRef] [PubMed]
- Al-Eajailat, S.M.; Al-Madani Senior, M.V. The role of magnetic resonance imaging and visual evoked potential in management of optic neuritis. Pan. Afr. Med. J. 2014, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.L.; Garber, J.Y.; Klistorner, A.; Barnett, M.H. The electrophysiological assessment of visual function in Multiple Sclerosis. Clin. Neurophysiol. Pract. 2019, 4, 90–96. [Google Scholar] [CrossRef]
- Lee, K.H.; Hashimoto, S.A.; Hooge, J.P.; Kastrukoff, L.F.; Oger, J.J.; Li, D.K.; Paty, D.W. Magnetic resonance imaging of the head in the diagnosis of multiple sclerosis: A prospective two years follow up with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 1991, 41, 657–660. [Google Scholar] [CrossRef]
- Matthews, W.B.; Wattam-Bell, J.R.; Pountey, E. Evoked potentials in the diagnosis of multiple sclerosis: A follow-up study. J. Neurol. Neurosurg. Psychiatry 1982, 45, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Hume, A.L.; Waxman, S.G. Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical course. J. Neurol. Sci. 1988, 83, 191–210. [Google Scholar] [CrossRef]
- Martinelli, V.; Dalla Costa, G.; Messina, M.J.; Di Maggio, G.; Sangalli, F.; Moiola, L.; Rodegher, M.; Colombo, B.; Furlan, R.; Leocani, L.; et al. Multiple biomarkers improve the prediction of multiple sclerosis in clinically isolated syndromes. Acta Neurol. Scand. 2017, 136, 454–461. [Google Scholar] [CrossRef]
- Fraser, C.L.; Klistorner, A.; Graham, S.; Garrick, R.; Billson, F.; Grigg, J. Multifocal visual evoked potential latency analysis: Predicting progression to multiple sclerosis. Arch. Neurol. 2006, 63, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Blanco, R.; Pérez-Rico, C.; Puertas-Muñoz, I.; Ayuso-Peralta, L.; Boquete, L.; Arévalo-Serrano, J. Functional assessment of the visual pathway with multifocal visual evoked potentials, and their relationship with disability in patients with multiple sclerosis. Mult. Scler. 2014, 20, 183–191. [Google Scholar] [CrossRef]
- Jung, P.; Beyerle, A.; Ziemann, U. Multimodal evoked potentials measure and predict disability progression in early relapsing–remitting multiple sclerosis. Mult. Scler. 2008, 14, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, S.; Azanjac Arsic, A.; Aleksic, D.; Toncev, G.; Miletic-Drakulic, S. Depression and Fatigue in Patients with Multiple Sclerosis Have No Influence on the Parameters of Cognitive Evoked Potentials. J. Clin. Neurophysiol. 2021, 38, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Wybrecht, D.; Reuter, F.; Zaaraoui, W.; Faivre, A.; Crespy, L.; Rico, A.; Malikova, I.; Confort-Gouny, S.; Soulier, E.; Cozzone, P.J.; et al. Voxelwise analysis of conventional magnetic resonance imaging to predict future disability in early relapsing-remitting multiple sclerosis. Mult. Scler. 2012, 18, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Preziosa, P.; Pagani, E.; Mesaros, S.; Riccitelli, G.C.; Dackovic, J.; Drulovic, J.; Filippi, M.; Rocca, M.A. Progression of regional atrophy in the left hemisphere contributes to clinical and cognitive deterioration in multiple sclerosis: A 5-year study. Hum. Brain Mapp. 2017, 38, 5648–5665. [Google Scholar] [CrossRef] [Green Version]
- Seghier, M.L. Laterality index in functional MRI: Methodological issues. Magn. Reson. Imaging 2008, 26, 594–601. [Google Scholar] [CrossRef]
- Rocca, M.A.; Preziosa, P.; Mesaros, S.; Pagani, E.; Dackovic, J.; Stosic-Opincal, T.; Drulovic, J.; Filippi, M. Clinically Isolated Syndrome Suggestive of Multiple Sclerosis: Dynamic Patterns of Gray and White Matter Changes-A 2-year MR Imaging Study. Radiology 2016, 278, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Martino, G.; Mammi, S.; Campi, A.; Comi, G.; Grimaldi, L.M. Does hemispheric dominance influence brain lesion distribution in multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 1995, 58, 748–749. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.M.; Hayashi, K.M.; de Zubicaray, G.; Janke, A.L.; Rose, S.E.; Semple, J.; Herman, D.; Hong, M.S.; Dittmer, S.S.; Doddrell, D.M.; et al. Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci. 2003, 23, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Prinster, A.; Quarantelli, M.; Orefice, G.; Lanzillo, R.; Brunetti, A.; Mollica, C.; Salvatore, E.; Morra, V.B.; Coppola, G.; Vacca, G.; et al. Grey matter loss in relapsing-remitting multiple sclerosis: A voxel-based morphometry study. Neuroimage 2006, 29, 859–867. [Google Scholar] [CrossRef]
- Meador, K.J.; Loring, D.W.; Ray, P.G.; Helman, S.W.; Vazquez, B.R.; Neveu, P.J. Role of cerebral lateralization in control of immune processes in humans. Ann. Neurol. 2004, 55, 840–844. [Google Scholar] [CrossRef]
- Gabilondo, I.; Rilo, O.; Ojeda, N.; Pena, J.; Gómez-Gastiasoro, A.; Mendibe Bilbao, M.; Rodríguez-Antigüedad, A.; Cabrera, A.; Diez, I.; Ibarretxe-Bilbao, N. The influence of posterior visual pathway damage on visual information processing speed in multiple sclerosis. Mult. Scler. 2017, 23, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
Male N (%) | Female N (%) | Total N (%) | |
---|---|---|---|
Ten-year monitoring | 11 (13.2) | 22 (26.5) | 33 (39.7) |
Five-year monitoring | 8 (9.6) | 11 (13.2) | 19 (22.9) |
Two-year monitoring | 11 (13.2) | 20 (24.1) | 31 (37.3) |
X ± SD | Min–Max | Ten-Year Monitoring | Five-Year Monitoring | Two-Year Monitoring | p * | |
---|---|---|---|---|---|---|
Age of the patients (years) | 38.31 ± 9.01 | 22–58 | 44.67 ± 8.35 | 35.32 ± 7.67 | 33.9 ± 6.11 | p < 0.0005 |
Years of education (years) | 13.32 ± 3.09 | 8–24 | 12.81 ± 3.57 | 13.37 ± 3.17 | 13.86 ± 2.41 | p = 0.432 |
Treatment duration (months) | 89.72 ± 43.09 | 52.57 ± 25.75 | 24.35 ± 6.13 | p < 0.0005 | ||
Disease duration (months) | 104.81 ± 78.67 | 18–408 | 180.75 ± 72.06 | 72.53 ± 23.96 | 44.27 ± 18.08 | p < 0.0005 |
EDSS | 2.11 ± 1.37 | 0–7.0 | 2.50 ±0.75 | 2.0 ± 0.5 | 2.0 ±1.0 | p = 0.555 |
Ten-Year Monitoring | Five-Year Monitoring | Two-Year Monitoring | |
---|---|---|---|
Achieved NEDA-3 N (%) | 6 (18.2) | 4 (21.1) | 9 (29) |
Did not achieve NEDA-3 N (%) | 27 (81.8) | 15 (78.9) | 22 (71) |
Achieving NEDA-3 | Odds Ratio (95% CI) | p * |
---|---|---|
Optic neuritis | 1.542 (0.536–4.437) | 0.422 |
Normal finding on the left eye | 5.850 (1.741–19.655) | 0.004 |
Total score for both eyes | 0.698 (0.473–1.030) | 0.07 |
Score for the left eye | 0.344 (0.156–0.757) | 0.008 |
Latency value for the left eye | 0.966 (0.934–0.999) | 0.042 |
Amplitude value for the left eye | 1.135 (0.959–1.343) | 0.142 |
Score for the right eye | 1.012 (0.538–1.903) | 0.971 |
Latency value for the right eye | 1.002 (0.981–1.02) | 0.848 |
Amplitude value for the right eye | 1.143 (0.968–1.350) | 0.114 |
Length of treatment | 0.996 (0.984–1.009) | 0.551 |
Disease duration | 1.004 (0.996–1.012) | 0.305 |
EDSS | 1.520 (0.873–2.647) | 0.139 |
Increase in EDSS | Odds ratio (95% CI) | p * |
Latency value for the left eye | 1.026 (1.001–1.053) | 0.041 |
Immunomodulatory therapy | 0.111 (0.025–0.486) | 0.002 |
Initial EDSS value | 1.966 (1.271–3.039) | 0.002 |
Normal finding on the left eye | 1.966 (1.271–3.039) | 0.020 |
r | p * | |
---|---|---|
Latency for the eye affected by ON | 0.261 | 0.087 |
Amplitude for the eye affected by ON | −0.186 | 0.227 |
Total VEP score for both eyes | 0.308 | 0.006 |
VEP score for the left eye | 0.269 | 0.016 |
VEP score for the right eye | 0.253 | 0.025 |
Latency value for the left eye | 0.246 | 0.03 |
Latency value for the right eye | 0.302 | 0.007 |
Amplitude value for the left eye | −0.133 | 0.245 |
Amplitude value for the right eye | −0.184 | 0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletic-Drakulic, S.; Miloradovic, I.; Jankovic, V.; Azanjac-Arsic, A.; Lazarevic, S. VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis. Sensors 2022, 22, 8849. https://doi.org/10.3390/s22228849
Miletic-Drakulic S, Miloradovic I, Jankovic V, Azanjac-Arsic A, Lazarevic S. VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis. Sensors. 2022; 22(22):8849. https://doi.org/10.3390/s22228849
Chicago/Turabian StyleMiletic-Drakulic, Svetlana, Ivana Miloradovic, Vladimir Jankovic, Ana Azanjac-Arsic, and Snezana Lazarevic. 2022. "VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis" Sensors 22, no. 22: 8849. https://doi.org/10.3390/s22228849
APA StyleMiletic-Drakulic, S., Miloradovic, I., Jankovic, V., Azanjac-Arsic, A., & Lazarevic, S. (2022). VEP Score of a Left Eye Had Predictive Values for Achieving NEDA-3 over Ten Years in Patients with Multiple Sclerosis. Sensors, 22(22), 8849. https://doi.org/10.3390/s22228849