Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System
Abstract
:1. Introduction
2. Relative Works
3. Proposed Algorithm
3.1. Pre-Processing
- Step 1: Take the average of 8-neighbor pixels.
- Step 2: Subtract the average value from 8-neighbor pixels and find the minimum differential pixel.
- Step 3: Use the corresponding minimum differential value among 8-neighbor pixels instead of the central pixels.
3.2. Moving Object Detection
3.3. Motion Object Tracking
4. Experiments and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shidik, G.F.; Noersasongko, E.; Nugraha, A.; Andono, P.N.; Jumanto, J.; Kusuma, E.J. A Systematic Review of Intelligence Video Surveillance: Trends, Techniques, Frameworks, and Datasets. IEEE Access 2019, 7, 170457–170473. [Google Scholar] [CrossRef]
- Berjón, D.; Cuevas, C.; Morán, F.; García, N. Real-time nonpara metric background subtraction with tracking-based foreground update. Pattern Recognit. 2018, 74, 156–170. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, Z.; Yang, J.; Kasabov, N.K. Kasabov Change Detection in Multitemporal Monitoring Images Under Low Illumination. IEEE Access 2020, 8, 126700–126712. [Google Scholar] [CrossRef]
- Purohit, M.; Singh, M.; Kumar, A.; Kaushik, B.K. Enhancing the Surveillance Detection Range of Image Sensors Using HDR Techniques. IEEE Sens. J. 2021, 21, 19516–19528. [Google Scholar] [CrossRef]
- Koz, A. Ground-Based Hyperspectral Image Surveillance Systems for Explosive Detection: Part I—State of the Art and Challenges. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 12, 4746–4753. [Google Scholar] [CrossRef]
- Gao, X.; Xu, G.; Li, S.; Wu, Y.; Dancigs, E.; Du, J. Particle Filter-Based Prediction for Anomaly Detection in Automatic Surveillance. IEEE Access 2019, 7, 107550–107559. [Google Scholar] [CrossRef]
- Garg, K.; Ramakrishnan, N.; Prakash, A.; Srikanthan, T. Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2204–2215. [Google Scholar] [CrossRef]
- Sajjad, M.; Haq, I.U.; Lloret, J.; Ding, W.; Muhammad, K. Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment. IEEE Trans. Ind. Inform. 2019, 15, 6541–6550. [Google Scholar] [CrossRef]
- Javanbakhti, S.; Zinger, S.; De With, P.H.N. Fast scene analysis for surveillance & video databases. IEEE Trans. Consum. Electron. 2017, 63, 325–333. [Google Scholar]
- Patil, P.W.; Dudhane, A.; Kulkarni, A.; Murala, S.; Gonde, A.B.; Gupta, S. An Unified Recurrent Video Object Segmentation Framework for Various Surveillance Environments. IEEE Trans. Image Process. 2021, 30, 7889–7902. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Jiang, M.; Yu, X.; Ding, X. Cost-Effective Vehicle Type Recognition in Surveillance Images with Deep Active Learning and Web Data. IEEE Trans. Intell. Transp. Syst. 2019, 21, 79–86. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Chen, X.; Huang, K. A Richly Annotated Pedestrian Dataset for Person Retrieval in Real Surveillance Scenarios. IEEE Trans. Image Process. 2019, 28, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; Lin, L. Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Chen, Y.; Yong, H.; Jiang, R.; Zhang, L.; Hua, X.-S. Foreground Gating and Background Refining Network for Surveillance Object Detection. IEEE Trans. Image Process. 2019, 28, 6077–6090. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Ha, J.E. Foreground Objects Detection Using a Fully Convolutional Network with a Background Model Image and Multiple Original Images. IEEE Access 2020, 8, 159864. [Google Scholar] [CrossRef]
- Sakkos, D.; Ho, E.S.L.; Shum, H.P.H. Illumination-aware multi-task GANs for foreground segmentation. IEEE Access 2019, 7, 10976–10986. [Google Scholar] [CrossRef]
- Babaee, M.; Dinh, D.T.; Rigoll, G. A deep convolutional neural network for video sequence background subtraction. Pattern Recognit. 2018, 76, 635–649. [Google Scholar] [CrossRef]
- Chen, X.; Qing, L.; He, X.; Su, J.; Peng, Y. From Eyes to Face Synthesis: A New Approach for Human-Centered Smart Surveillance. IEEE Access 2018, 6, 14567–14575. [Google Scholar] [CrossRef]
- Bozcan, I.; Le Fevre, J.; Pham, H.X.; Kayacan, E. GridNet: Image-Agnostic Conditional Anomaly Detection for Indoor Surveillance. IEEE Robot. Autom. Lett. 2021, 6, 1638–1645. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Echi, M. Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access 2021, 9, 63283–63293. [Google Scholar] [CrossRef]
- Shao, Z.; Wang, L.; Wang, Z.; Du, W.; Wu, W. Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 781–794. [Google Scholar] [CrossRef]
- Gong, X.; Le, Z. Research and implementation of multi-object tracking based on vision DSP. J. Real-Time Image Process. 2020, 17, 1801–1809. [Google Scholar] [CrossRef]
- Otoom, M.; Al-Louzi, M. Enhanced TLD-based video object-tracking implementation tested on embedded platforms. J. Real Time Image Process. 2021, 18, 937–952. [Google Scholar] [CrossRef]
- Available online: https://www.vdicctv.com/ (accessed on 10 September 2022).
- Available online: https://www.advantech.com/zh-tw/products/video-vision-cards/sub_multi-core_digital_signal_processing (accessed on 10 November 2022).
- Available online: http://www.youtube.com/watch?v=iSC8VFOV0zc&feature=youtu.be (accessed on 20 August 2022).
- Hsia, S.; Wang, S.; Chen, C. Fast Search Real-Time Face Recognition based on DCT Coefficients Distribution. IET Image Process. 2020, 14, 570–575. [Google Scholar] [CrossRef]
- Shifa, A.; Asghar, M.N.; Fleury, M.; Kanwal, N.; Ansari, M.S.; Lee, B.; Herbst, M.; Qiao, Y. MuLViS: Multi-Level Encryption Based Security System for Surveillance Videos. IEEE Access 2020, 8, 177131–177155. [Google Scholar] [CrossRef]
Bit Number | ||||||||
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
Data Byte1 | 0 | 0 | 0 | 0 | 0 | Iris Close | Focus Open | Focus Near |
Data Byte2 | Focus Far | Zoom In | Zoom Out | Tilt Down | Tilt Up | Pan Left | Pan Right | 0 |
Data Byte3 | Pan Speed 00 to 3F | |||||||
Data Byte4 | Tilt Speed 00 to 3F |
Original Image | Zoom in 4× | Zoom in 9× | Zoom in 16× | |
---|---|---|---|---|
Face Size | 20 × 20 | 40 × 40 | 60 × 60 | 80 × 80 |
Accuracy | 48.3% | 76.5% | 82.6% | 91.2% |
Error | 26.5% | 13.3 | 11.8 | 6.5% |
unknown | 25.2% | 10.2% | 5.6% | 2.3% |
K. Garg [7] | Zhang [12] | Z. Shao [21] | A. Shifa [28] | Proposed | |
---|---|---|---|---|---|
Target | Car | Human | Ship | Human | Human |
Method | Background Modeling | Neural Network | Neural Network | Multi-Level Video Security | Adaptive Segmentation |
Video Capture | Fixed | Fixed | Fixed | Fixed | 360° Rotation |
Function | Object Detection | Object Detection, Attribute Recognition | Object Detection | Object Detection, Encryption | Object Detection, Tracking, Recognition |
Zoom | no | no | no | no | yes |
Auto Scan | no | no | no | no | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, S.-C.; Wang, S.-H.; Wei, C.-M.; Chang, C.-Y. Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System. Sensors 2022, 22, 8791. https://doi.org/10.3390/s22228791
Hsia S-C, Wang S-H, Wei C-M, Chang C-Y. Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System. Sensors. 2022; 22(22):8791. https://doi.org/10.3390/s22228791
Chicago/Turabian StyleHsia, Shih-Chang, Szu-Hong Wang, Chung-Mao Wei, and Chuan-Yu Chang. 2022. "Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System" Sensors 22, no. 22: 8791. https://doi.org/10.3390/s22228791
APA StyleHsia, S.-C., Wang, S.-H., Wei, C.-M., & Chang, C.-Y. (2022). Intelligent Object Tracking with an Automatic Image Zoom Algorithm for a Camera Sensing Surveillance System. Sensors, 22(22), 8791. https://doi.org/10.3390/s22228791