Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model
Abstract
:1. Introduction
2. Sensor Design
- Sensors are worn by the patients, e.g., eyeglasses, earrings, shoes, gloves, clothing, or watches.
Sensor Performance
3. Development of Care-Home Model in CST Studio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, J.; Amankwah-Amoah, J.; Wang, X. A multidisciplinary perspective of big data in management research. Int. J. Prod. Econ. 2017, 191, 97–112. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.-A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Wuest, T.; Irgens, C.; Thoben, K.-D. An approach to monitoring quality in manufacturing using supervised machine learning on produt state data. J. Intell. Manuf. Vol. 2014, 25, 1167–1180. [Google Scholar] [CrossRef]
- Tang, D.; Zheng, K.; Zhang, H.; Sang, Z.; Zhang, Z.; Xu, C.; Espinosa-Oviedo, J.A.; Vargas-Solar, G.; Zechinelli-Martini, J.-L. Using Autonomous Intelligence to Build a Smart Shop Floor. Procedia CIRP 2016, 56, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Almada-Lobo, F. The Industry 4.0 revolution and the future of manufacturing execution systems (MES). J. Innov. Manag. 2015, 3, 16–21. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Schmidt, R.; Möhring, M.; Härting, R.-C.; Reichstein, C.; Neumaier, P.; Jozinović, P.; Abramowicz, W. Industry 4.0—Potentials for Creating Smart Products: Empirical Research Results. In Business Information Systems: 18th International Conference, BIS 2015, Poznań, Poland, 24–26 June 2015; Springer International Publishing: Poznań, Poland, 2015; pp. 16–27. [Google Scholar]
- Qin, J.; Liu, Y.; Grosvenor, R. A categorical framework of manufacturing for industry 4.0 and beyond. Procedia CIRP 2016, 52, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Arslan, T.; Ratnarajah, T. Digital Twin Perspective of Fourth Industrial and Healthcare Revolution. IEEE Access 2022, 10, 25732–25754. [Google Scholar] [CrossRef]
- Košturiak, J.; Gregor, M. Simulation in production system life cycle. Comput. Ind. 1999, 38, 159–172. [Google Scholar] [CrossRef]
- Lee, J. Smart factory systems. Inform. Spektrum 2015, 38, 230–235. [Google Scholar] [CrossRef]
- Qu, T.; Yang, H.D.; Huang, G.Q.; Zhang, Y.F.; Luo, H.; Qin, W. A case of implementing RFID-based real-time shop-floor material management for household electrical appliance manufacturers. J. Intell. Manuf. 2012, 23, 2343–2356. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Greer, M.J.; Rosen, D.W.; Schaefer, D. Cloud Manufacturing: Drivers, Current Status, and Future Trends. In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, Madison, WI, USA, 10–14 June 2013; American Society of Mechanical Engineers: Madison, WI, USA, 2013. [Google Scholar]
- Xu, X. From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 2012, 28, 75–86. [Google Scholar] [CrossRef]
- Zancul, E.d.S.; Takey, S.M.; Barquet, A.P.B.; Kuwabara, L.H.; Miguel, P.A.C.; Rozenfeld, H. Business process support for IoT based product-service systems (PSS). Bus. Process Manag. J. 2016, 22, 302–323. [Google Scholar] [CrossRef]
- Zhang, D.; He, Z.; Qian, Y.; Wan, J.; Li, D.; Zhao, S. Revisiting unknown RFID tag identification in large-scale internet of things. IEEE Wirel. Commun. 2016, 23, 24–29. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Karatas, M.; Eriskin, L.; Deveci, M.; Pamucar, D.; Garg, H. Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Syst. Appl. 2022, 200, 116912. [Google Scholar] [CrossRef]
- Aghdam, Z.N.; Rahmani, A.M.; Hosseinzadeh, M. The Role of the Internet of Things in Healthcare: Future Trends and Challenges. Comput. Methods Programs Biomed. 2021, 199, 105903. [Google Scholar] [CrossRef]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Shafto, M.; Conroy, M.; Doyle, R.; Glaessgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Modeling, simulation, information technology & processing roadmap. Nat. Aeronaut. Space Adm. 2012, 32, 1–38. [Google Scholar]
- Weyer, S.; Meyer, T.; Ohmer, M.; Gorecky, D.; Zühlke, D. Future Modeling and Simulation of CPS-based Factories: An Example from the Automotive Industry. IFAC-PapersOnLine 2016, 49, 97–102. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Di, D. Public Engagement; Forum, W.E. Factories of the Future Find Growth and Sustainability Through Digitalization. Available online: https://www.weforum.org/press/2021/03/factories-of-the-future-find-growth-and-sustainability-through-digitalization/ (accessed on 27 September 2022).
- Siemens Digitalization in Industry: Twins with Potential. Available online: https://new.siemens.com/global/en/company/stories/industry/the-digital-twin.html (accessed on 25 September 2022).
- AG, S. Simulation & Digital Twin. Available online: https://assets.new.siemens.com/siemens/assets/api/uuid:3a888b679aaf5feeb7cf9eacfe8806aa0c6046b6/factsheet-cct-simulation-and-digital-twin-en.pdf (accessed on 25 September 2022).
- Company, T.H.E. Chevron Annual Report Supplement. Available online: https://www.chevron.com/-/media/shared-media/documents/2020-chevron-annual-report-supplement.pdf (accessed on 13 August 2022).
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in age-related disease burden and healthcare utilization. Aging Cell 2019, 18, e12861. [Google Scholar] [CrossRef] [PubMed]
- Dall, T.M.; Gallo, P.D.; Chakrabarti, R.; West, T.; Semilla, A.P.; Storm, M.V. An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health Aff. 2013, 32, 2013–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 2020, 26, 1212–1217. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef] [Green Version]
- Bagaria, N.; Laamarti, F.; Badawi, H.F.; Albraikan, A.; Martinez Velazquez, R.A.; El Saddik, A. Health 4.0: Digital Twins for Health and Well-Being; Springer: Cham, Switzerland, 2020; pp. 143–152. [Google Scholar]
- Ahmadi-Assalemi, G.; Al-Khateeb, H.; Maple, C.; Epiphaniou, G.; Alhaboby, Z.A.; Alkaabi, S.; Alhaboby, D. Digital Twins for Precision Healthcare (Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity); Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Jimenez, J.I.; Jahankhani, H.; Kendzierskyj, S. Health Care in the Cyberspace: Medical Cyber-Physical System and Digital Twin Challenges; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dey, N.; Ashour, A.S.; Shi, F.; Fong, S.J.; Tavares, J.M.R.S. Medical cyber-physical systems: A survey. J. Med. Syst. 2018, 42, 64. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Sokolsky, O.; Chen, S.; Hatcliff, J.; Jee, E.; Kim, B.; King, A.; Mullen-Fortino, M.; Park, S.; Roederer, A. Challenges and Research Directions in Medical Cyber–Physical Systems. Proc. IEEE 2012, 100, 75–90. [Google Scholar]
- Laaki, H.; Miche, Y.; Tammi, K. Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. IEEE Access 2019, 7, 20325–20336. [Google Scholar] [CrossRef]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital Twin for Intelligent Context-Aware IoT Healthcare Systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Martinez-Velazquez, R.; Gamez, R.; Saddik, A.E. Cardio Twin A Digital Twin of the human heart running on the edge. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019. [Google Scholar]
- Chen, X.; Feng, Y.; Zhong, W.; Kleinstreuer, C. Numerical investigation of the interaction, transport and deposition of multicomponent droplets in a simple mouth-throat model. J. Aerosol Sci. 2016, 105, 108–127. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, J.; Chen, X.; Lin, J. An in silico subject-variability study of upper airway morphological influence on the airflow regime in a tracheobronchial tree. Bioengineering 2017, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Feng, Y.; Zhong, W.; Sun, B.; Tao, F. Numerical investigation of particle deposition in a triple bifurcation airway due to gravitational sedimentation and inertial impaction. Powder Technol. 2017, 323, 284–293. [Google Scholar] [CrossRef]
- Feng, Y.; Kleinstreuer, J.Z.C.; Wang, Q.; Wang, J.; Wu, D.; Lin, J. An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J. Aerosol Sci. 2018, 123, 185–207. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Pratap Singh, R.; Suman, R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet Things Cyber Phys. Syst. 2022, 2, 12–30. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Siddique, Z. Industry 4.0 in Healthcare: A systematic review. Int. J. Inf. Manag. Data Insights 2022, 2, 100079. [Google Scholar] [CrossRef]
- Kumar, P.; Silambarasan, K. Enhancing the Performance of Healthcare Service in IoT and Cloud Using Optimized Techniques. IETE J. Res. 2019, 68, 1475–1484. [Google Scholar] [CrossRef]
- Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mech. Syst. Signal Process. 2020, 135, 106382. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Jagadev, P.; Giri, L.I. Non-contact monitoring of human respiration using infrared thermography and machine learning. Infrared Phys. Technol. 2020, 104, 103117. [Google Scholar] [CrossRef]
- Maurya, L.; Mahapatra, P.; Chawla, D. Non-contact breathing monitoring by integrating RGB and thermal imaging via RGB-thermal image registration. Biocybern. Biomed. Eng. 2021, 41, 1107–1122. [Google Scholar] [CrossRef]
- Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive applications. Pers. Ubiquitous Comput. 2011, 15, 707–715. [Google Scholar] [CrossRef]
- Wu, K.; Chan, C.-H.; Zhang, Y.-T. Contactless and Cuffless Monitoring of Blood Pressure on a Chair Using E-Textile Materials. In International Summer School and Symposium on Medical Devices and Biosensors; MIT: Boston, MA, USA, 2006. [Google Scholar]
- Baek, H.J.; Chung, G.S.; Kim, K.K.; Park, K.S. A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 150–158. [Google Scholar] [CrossRef]
- Inan, O.T.; Park, D.; Giovangrandi, L.; Kovacs, G.T. Noninvasive measurement of physiological signals on a modified home bathroom scale. IEEE Trans. Biomed. Eng. 2012, 59, 2137–2143. [Google Scholar] [CrossRef]
- Saied, I.M.; Arslan, T.; Chandran, S. Classification of Alzheimer’s Disease Using RF Signals and Machine Learning. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 77–85. [Google Scholar] [CrossRef]
- Saied, I.; Arslan, T. Microwave Imaging Algorithm for Detecting Brain Disorders. In Proceedings of the 29th International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–18 April 2019; pp. 1–5. [Google Scholar]
- Saied, I.; Arslan, T. Wideband Textile Antenna for Monitoring Neurodegenerative Diseases. In Proceedings of the IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 356–360. [Google Scholar] [CrossRef]
- MobileMark. What Is Meant by the VSWR of an Antenna? Available online: https://www.mobilemark.com/about/faq/what-is-meant-by-the-vswr-of-an-antenna/#:~:text=The%20range%20of%20values%20for,having%20a%20%E2%80%9CGood%20Match%E2%80%9D (accessed on 22 September 2022).
- Ojaroudi, M.; Ghanbari, G.; Ojaroudi, N.; Ghobadi, C. Small Square Monopole Antenna for UWB Applications With Variable Frequency Band-Notch Function. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1061–1064. [Google Scholar] [CrossRef]
- Mahabub, A.; Rahman, M.M.; Al-Amin, M.; Rahman, M.S.; Rana, M.M. Design of a Multiband Patch Antenna for 5G Communication Systems. Open J. Antennas Propag. 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A.; Sarirete, A. Chapter 16—An Overview of Artificial Intelligence and Big Data Analytics for Smart Healthcare: Requirements, Applications, and Challenges; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
Parameters | Symbol | Value (mm) |
---|---|---|
Length | L | 85 |
Width | W | 35 |
Feeding Line L | Lf | 12 |
Feeding Line W | Wf | 17 |
QWTL Length | Lc | 14 |
QWTL Width | Wsm | 7 |
Step 1 Radiation-Patch Length | Ls1 | 10 |
Step 1 Radiation-Patch Width | Ws1 | 13 |
Step 2 Radiation-Patch Length | Ls2 | 10 |
Step 2 Radiation-Patch Width | Ws2 | 20 |
Step 3 Radiation-Patch Length | Ls3 | 10 |
Step 3 Radiation-Patch Width | Ws3 | 27 |
Step 4 RadiationPatch Length | Ls4 | 10 |
Step 4 Radiation-Patch Width | Ws4 | 30 |
Top Radiating-Patch Length | Lt | 15 |
Top Radiating-Patch Width | Wt | 35 |
Top Ground Place | L1 | 25 |
Middle Ground Plane Length | L2 | 30 |
Bottom Ground Plane Length | L3 | 25 |
Gap 1 | g1 | 3 |
Gap 2 | g2 | 2 |
Substrate thickness | h | 6 |
Dielectric Permittivity of Substrate (Felt) | εR | 1.55 |
Parameter | Sensor A | Sensor B | Sensor C | Sensor D |
---|---|---|---|---|
Height from floor | 0.400 m | 0.620 m | 0.598 m | 0.196 m |
S-parameter (S11 dB) | −0.38, −0.39, −0.400, …., −7.71, −7.73, −7.73 | −0.38, −0.39, −0.40, …, −7.68, −7.68, −7.58 | −0.38, −0.39, −0.40, …, −7.29, −7.28, −7.29 | −0.37, −0.37, −0.38, …, −8.66, −8.65, −8.63 |
Antenna-to-patient distance | 0.359 m | 1.562 m | 1.428 m | 0.958 m |
Efield strength | 9.9233 V/m | 2.3735 V/m | 1.3716 V/m | 3.1465 V/m |
Time to reach the E-probe | 2.3372 × 10−6 s | 6.518 × 10−6 s | 5.7678 × 10−6 s | 4.9218 × 10−6 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Saied, I.M.; Ratnarajah, T.; Arslan, T. Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model. Sensors 2022, 22, 8519. https://doi.org/10.3390/s22218519
Khan S, Saied IM, Ratnarajah T, Arslan T. Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model. Sensors. 2022; 22(21):8519. https://doi.org/10.3390/s22218519
Chicago/Turabian StyleKhan, Sagheer, Imran M. Saied, Tharmalingam Ratnarajah, and Tughrul Arslan. 2022. "Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model" Sensors 22, no. 21: 8519. https://doi.org/10.3390/s22218519
APA StyleKhan, S., Saied, I. M., Ratnarajah, T., & Arslan, T. (2022). Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model. Sensors, 22(21), 8519. https://doi.org/10.3390/s22218519