Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Highly DCF
2.2. Modeling of the Biconic Taper Profiles
2.3. Adiabatic Taper Profile
2.4. All-Fiber CMZI
3. Results and Discussion
Case Study: In-Line All-Fiber Digital Optical Strain Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brambilla, G.; Xu, F.; Horak, P.; Jung, Y.; Koizumi, F.; Sessions, N.P.; Koukharenko, E.; Feng, X.; Murugan, G.S.; Wilkinson, J. Optical fiber nanowires and microwires: Fabrication and applications. Adv. Opt. Photonics 2009, 1, 107. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.; Lee, S.-W.; Tatam, R. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, F.; Lacroix, S.; Daxhelet, X.; Black, R.J.; Bures, J. Broadband all-fiber filters for wavelength division multiplexing application. Appl. Phys. Lett. 1989, 54, 1290–1292. [Google Scholar] [CrossRef]
- Celaschi, S.; Malheiros-Silveira, G.N. High-Resolution and Low-Loss All-Fiber Spectral Filters Based on Biconic Tapers. J. Lightwave Technol. 2017, 35, 5381–5384. [Google Scholar] [CrossRef]
- Dimmick, T.E.; Kakarantzas, G.; Birks, T.A.; Diez, A.; Russell, P.S.J. Compact all-fiber acoustooptic tunable filters with small bandwidth-length product. IEEE Photonics Technol. Lett. 2000, 12, 1210–1212. [Google Scholar] [CrossRef]
- Birks, T.A.; Wadsworth, W.J.; Russell, P.S.J. Supercontinuum generation in tapered fibers. Opt. Lett. 2000, 25, 1415. [Google Scholar] [CrossRef]
- Kieu, K.; Mansuripur, M. Tuning of fiber lasers by use of a single-mode biconic fiber taper. Opt. Lett. 2006, 31, 2435. [Google Scholar] [CrossRef]
- Du, W.; Tao, X.; Tam, H.-Y. Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 1999, 11, 596–598. [Google Scholar]
- Tian, Z.; Yam, S.S.-H. In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor. IEEE Photonics Technol. Lett. 2009, 21, 161–163. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, T.; Chiang, K.S.; Deng, M. All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures. J. Lightwave Technol. 2012, 30, 805–810. [Google Scholar] [CrossRef]
- Martins, T.J.M.; Marques, M.B.; Roy, P.; Jamier, R.; Fevrier, S.; Frazao, O. Temperature-Independent Multi-Parameter Measurement Based on a Tapered Bragg Fiber. IEEE Photonics Technol. Lett. 2016, 28, 1565–1568. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Yu, Y.; Zhang, X.; Chen, C.; Liang, J.; Liu, Z.; Sun, H.-B. Compact Mach–Zehnder Interferometer Based on Tapered Hollow Optical Fiber. IEEE Photonics Technol. Lett. 2015, 27, 1277–1280. [Google Scholar] [CrossRef]
- Wieduwilt, T.; Brückner, S.; Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers. Meas. Sci. Technol. 2011, 22, 075201. [Google Scholar] [CrossRef]
- Bock, W.J.; Chen, J.; Mikulic, P.; Eftimov, T. A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring. IEEE Trans. Instrum. Meas. 2007, 56, 1176–1180. [Google Scholar] [CrossRef]
- Osuch, T.; Markowski, K.; Jedrzejewski, K. Temperature Independent Tapered Fiber Bragg Grating-Based Inclinometer. IEEE Photonics Technol. Lett. 2015, 27, 2312–2315. [Google Scholar] [CrossRef]
- Gong, H.; Qian, Z.; Yang, X.; Zhao, C.; Dong, X. Optical Fiber Inclinometer Based on a Fiber Taper Cascading a Peanut-Shape Structure. IEEE Sens. J. 2015, 15, 3917–3920. [Google Scholar] [CrossRef]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar] [CrossRef]
- Gan, L.; Wang, R.; Liu, D.; Duan, L.; Liu, S.; Fu, S.; Tang, M. Spatial-Division Multiplexed Mach–Zehnder Interferometers in Heterogeneous Multicore Fiber for Multiparameter Measurement. IEEE Photonics J. 2016, 8, 15716155. [Google Scholar] [CrossRef]
- Guerra, C.P.; Malheiros-Silveira, G.N.; Celaschi, S. Thermal response of a packaged narrowband optical filter based on biconically tapered depressed-cladding fibre. Electron. Lett. 2019, 55, 849–851. [Google Scholar] [CrossRef]
- Cusano, A.; Pilla, P.; Contessa, L.; Iadicicco, A.; Campopiano, S.; Cutolo, A.; Guerra, G. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. Appl. Phys. Lett. 2005, 87, 234105. [Google Scholar] [CrossRef]
- Korposh, S.; Selyanchyn, R.; Yasukochi, W.; Lee, S.-W.; James, S.W.; Tatam, R.P. Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 2012, 133, 784–792. [Google Scholar] [CrossRef]
- Chen, L.H.; Chan, C.C.; Ni, K.; Hu, P.B.; Li, T.; Wong, W.C.; Leong, K.C. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper. Sens. Actuators B Chem. 2013, 178, 176–184. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Springer: Boston, MA, USA, 1984. [Google Scholar]
- Celaschi, S.; Malheiros-Silveira, G.N.; Grégoire, N.; Morency, S.; Messaddeq, Y.; Floridia, C.; Rosolem, J.B. Design Tolerances of Devices Based on Tapered Depressed-Cladding Fibers. In Proceedings of theLatin America Optics and Photonics Conference, Lima, Peru, 12–15 November 2018. [Google Scholar]
- Kieu, K.Q.; Mansuripur, M. Biconical Fiber Taper Sensors. IEEE Photonics Technol. Lett. 2006, 18, 2239–2241. [Google Scholar] [CrossRef]
- Wiedemann, U.; Karapetyan, K.; Dan, C.; Pritzkau, D.; Alt, W.; Irsen, S.; Meschede, D. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation. Opt. Express 2010, 18, 7693–7704. [Google Scholar] [CrossRef]
- Mores, J.A., Jr.; Malheiros-Silveira, G.N.; Fragnito, H.L.; Hernández-Figueroa, H.E. Efficient calculation of higher-order optical waveguide dispersion. Opt. Express 2010, 18, 19522. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, H.L.; Polzik, E.S.; Appel, J. Heater Self-Calibration Technique for Shape Prediction of Fiber Tapers. J. Lightwave Technol. 2014, 32, 1886–1891. [Google Scholar] [CrossRef]
- Bansal, N.P.; Doremus, R.H. Handbook of Glass Properties; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Biazoli, C.R.; Silva, S.; Franco, M.A.R.; Frazão, O.; Cordeiro, C.M.B. Multimode interference tapered fiber refractive index sensors. Appl. Optics 2012, 51, 5941–5945. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celaschi, S.; Grégoire, N.; Messaddeq, Y.; Biazoli, C.R.; Malheiros-Silveira, G.N. Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber. Sensors 2022, 22, 7145. https://doi.org/10.3390/s22197145
Celaschi S, Grégoire N, Messaddeq Y, Biazoli CR, Malheiros-Silveira GN. Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber. Sensors. 2022; 22(19):7145. https://doi.org/10.3390/s22197145
Chicago/Turabian StyleCelaschi, Sergio, Nicolas Grégoire, Younès Messaddeq, Claudecir R. Biazoli, and Gilliard N. Malheiros-Silveira. 2022. "Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber" Sensors 22, no. 19: 7145. https://doi.org/10.3390/s22197145
APA StyleCelaschi, S., Grégoire, N., Messaddeq, Y., Biazoli, C. R., & Malheiros-Silveira, G. N. (2022). Coaxial Mach–Zehnder Digital Strain Sensor Made from a Tapered Depressed Cladding Fiber. Sensors, 22(19), 7145. https://doi.org/10.3390/s22197145