Stressors Length and the Habituation Effect—An EEG Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stress vs. NON-STRESS Condition
3.2. Short vs. Long Stimuli
3.3. Stress over Time
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, K.S.; Farrell, A.D. Anxiety and psychosocial stress as predictors of headache and abdominal pain in urban early adolescents. J. Pediatr. Psychol. 2006, 31, 582–596. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Krantz, D.S.; Whittaker, K.S.; Sheps, D.S. Psychosocial risk factors for coronary heart disease: Pathophysiologic mechanisms. In Heart and Mind: Evolution of Cardiac Psychology; American Psychological Association: Washington, DC, USA, 2011. [Google Scholar]
- Fink, G. Stress, definitions, mechanisms, and effects outlined: Lessons from anxiety. In Stress: Concepts, Cognition, Emotion, and Behavior; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–11. [Google Scholar]
- Kemeny, M.E. The psychobiology of stress. Curr. Dir. Psychol. Sci. 2003, 12, 124–129. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Lazarus, R.S.; Cohen, J.B. Environmental stress. In Human Behavior and Environment; Springer: New York, NY, USA, 1977; pp. 89–127. [Google Scholar]
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar] [CrossRef]
- Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef]
- Jun, G.; Smitha, K.G. EEG based stress level identification. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003270–003274. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. Perceived stress scale. Meas. Stress. Guide Health Soc. Sci. 1994, 10, 1–2. [Google Scholar]
- Lee, E.H. Review of the psychometric evidence of the perceived stress scale. Asian Nurs. Res. 2012, 6, 121–127. [Google Scholar] [CrossRef]
- Koh, K.B.; Park, J.K.; Kim, C.H.; Cho, S. Development of the stress response inventory and its application in clinical practice. Psychosom. Med. 2001, 63, 668–678. [Google Scholar] [CrossRef]
- Bagby, R.M.; Ryder, A.G.; Schuller, D.R.; Marshall, M.B. The Hamilton Depression Rating Scale: Has the gold standard become a lead weight? Am. J. Psychiatry 2004, 161, 2163–2177. [Google Scholar] [CrossRef]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. 2019, 13, 440–460. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Li, X.; Shi, H.; Zhao, G. Analyze spontaneous gestures for emotional stress state recognition: A micro-gesture dataset and analysis with deep learning. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–8. [Google Scholar]
- Lefter, I.; Burghouts, G.J.; Rothkrantz, L.J. Recognizing stress using semantics and modulation of speech and gestures. IEEE Trans. Affect. Comput. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Jyotsna, C.; Amudha, J. Eye gaze as an indicator for stress level analysis in students. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore Karnataka, India, 19–22 September 2018; pp. 1588–1593. [Google Scholar]
- Pedrotti, M.; Mirzaei, M.A.; Tedesco, A.; Chardonnet, J.R.; Mérienne, F.; Benedetto, S.; Baccino, T. Automatic stress classification with pupil diameter analysis. INternational J. Hum. Comput. Interact. 2014, 30, 220–236. [Google Scholar] [CrossRef]
- Korda, A.I.; Giannakakis, G.; Ventouras, E.; Asvestas, P.A.; Smyrnis, N.; Marias, K.; Matsopoulos, G.K. Recognition of blinks activity patterns during stress conditions using cnn and markovian analysis. Signals 2021, 2, 55–71. [Google Scholar] [CrossRef]
- Lerner, J.S.; Dahl, R.E.; Hariri, A.R.; Taylor, S.E. Facial expressions of emotion reveal neuroendocrine and cardiovascular stress responses. Biol. Psychiatry 2007, 61, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Pediaditis, M.; Manousos, D.; Kazantzaki, E.; Chiarugi, F.; Simos, P.G.; Marias, K.; Tsiknakis, M. Stress and anxiety detection using facial cues from videos. Biomed. Signal Process. Control. 2017, 31, 89–101. [Google Scholar] [CrossRef]
- Dishman, R.K.; Nakamura, Y.; Garcia, M.E.; Thompson, R.W.; Dunn, A.L.; Blair, S.N. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int. J. Psychophysiol. 2000, 37, 121–133. [Google Scholar] [CrossRef]
- Lewis, R.S.; Weekes, N.Y.; Wang, T.H. The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychol. 2007, 75, 239–247. [Google Scholar] [CrossRef]
- Hou, X.; Liu, Y.; Sourina, O.; Tan, Y.R.E.; Wang, L.; Mueller-Wittig, W. EEG based stress monitoring. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 3110–3115. [Google Scholar]
- Attallah, O. An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics 2020, 10, 292. [Google Scholar] [CrossRef]
- Sulaiman, N.; Taib, M.N.; Lias, S.; Murat, Z.H.; Aris, S.A.M.; Mustafa, M.; Rashid, N.A. Development of EEG-based stress index. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012; pp. 461–466. [Google Scholar]
- Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 2016, 7, 3882–3898. [Google Scholar] [CrossRef]
- Asif, A.; Majid, M.; Anwar, S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med. 2019, 107, 182–196. [Google Scholar] [CrossRef]
- Rajendran, V.; Jayalalitha, S.; Adalarasu, K. EEG based evaluation of examination stress and test anxiety among college. IRBM 2021. [Google Scholar] [CrossRef]
- Paszkiel, S.; Dobrakowski, P.; Łysiak, A. The impact of different sounds on stress level in the context of EEG, cardiac measures and subjective stress level: A pilot study. Brain Sci. 2020, 10, 728. [Google Scholar] [CrossRef]
- Vanhollebeke, G.; De Smet, S.; De Raedt, R.; Baeken, C.; van Mierlo, P.; Vanderhasselt, M.A. The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies. Neurobiol. Stress 2022, 18, 100452. [Google Scholar] [CrossRef]
- Lundberg, U.; Kadefors, R.; Melin, B.; Palmerud, G.; Hassmén, P.; Engström, M.; Elfsberg Dohns, I. Psychophysiological stress and EMG activity of the trapezius muscle. Int. J. Behav. Med. 1994, 1, 354–370. [Google Scholar] [CrossRef]
- Luijcks, R.; Hermens, H.J.; Bodar, L.; Vossen, C.J.; Os, J.V.; Lousberg, R. Experimentally induced stress validated by EMG activity. PLoS ONE 2014, 9, e95215. [Google Scholar]
- Lisowska, A.; Wilk, S.; Peleg, M. Catching patient’s attention at the right time to help them undergo behavioural change: Stress classification experiment from blood volume pulse. In Proceedings of the 19th International Conference on Artificial Intelligence in Medicine (AIME), Virtual Event, 15–18 June; Springer Nature: Cham, Switzerland, 2021; pp. 72–82. [Google Scholar]
- Xie, J.; Wen, W.; Liu, G.; Chen, C.; Zhang, J.; Liu, H. Identifying strong stress and weak stress through blood volume pulse. In Proceedings of the 2016 International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 23–25 December 2016; pp. 179–182. [Google Scholar]
- Masaoka, Y.; Homma, I. Anxiety and respiratory patterns: Their relationship during mental stress and physical load. Int. J. Psychophysiol. 1997, 27, 153–159. [Google Scholar] [CrossRef]
- Bakker, J.; Pechenizkiy, M.; Sidorova, N. What’s your current stress level? Detection of stress patterns from GSR sensor data. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 573–580. [Google Scholar]
- Aqajari, S.A.H.; Naeini, E.K.; Mehrabadi, M.A.; Labbaf, S.; Rahmani, A.M.; Dutt, N. Gsr analysis for stress: Development and validation of an open source tool for noisy naturalistic gsr data. arXiv 2020, arXiv:2005.01834. [Google Scholar]
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci. 2015, 18, 1353–1363. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012, 61, 371–385. [Google Scholar] [CrossRef]
- Wen, T.Y.; Aris, S.M. Electroencephalogram (EEG) stress analysis on alpha/beta ratio and theta/beta ratio. Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 175–182. [Google Scholar]
- Choi, Y.; Kim, M.; Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 2015, 88, 65–72. [Google Scholar] [CrossRef]
- Rankin, C.H.; Abrams, T.; Barry, R.J.; Bhatnagar, S.; Clayton, D.F.; Colombo, J.; Coppola, G.; Geyer, M.A.; Glanzman, D.L.; Marsland, S.; et al. Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn. Mem. 2009, 92, 135–138. [Google Scholar] [CrossRef]
- Thompson, R.F.; Spencer, W.A. Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 1966, 73, 16. [Google Scholar] [CrossRef]
- Sharpless, S.; Jasper, H. Habituation of the arousal reaction. Brain 1956, 79, 655–680. [Google Scholar] [CrossRef]
- Thompson, R.F. Habituation: A history. Neurobiol. Learn. Mem. 2009, 92, 127. [Google Scholar] [CrossRef]
- Sokolov, E.; Brazier, M. The central nervous system and behavior. In Proceedings of the Transactions of the Third Conference, New York, NY, USA, 23–26 February 1958. [Google Scholar]
- Cyr, N.E.; Romero, L.M. Identifying hormonal habituation in field studies of stress. Gen. Comp. Endocrinol. 2009, 161, 295–303. [Google Scholar] [CrossRef]
- Gerra, G.; Zaimovic, A.; Mascetti, G.; Gardini, S.; Zambelli, U.; Timpano, M.; Raggi, M.; Brambilla, F. Neuroendocrine responses to experimentally-induced psychological stress in healthy humans. Psychoneuroendocrinology 2001, 26, 91–107. [Google Scholar] [CrossRef]
- Schommer, N.C.; Hellhammer, D.H.; Kirschbaum, C. Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosom. Med. 2003, 65, 450–460. [Google Scholar] [CrossRef]
- Hamer, M.; Gibson, E.L.; Vuononvirta, R.; Williams, E.; Steptoe, A. Inflammatory and hemostatic responses to repeated mental stress: Individual stability and habituation over time. Brain Behav. Immun. 2006, 20, 456–459. [Google Scholar] [CrossRef]
- Von Känel, R.; Preckel, D.; Zgraggen, L.; Mischler, K.; Kudielka, B.M.; Haeberli, A.; Fischer, J.E. The effect of natural habituation on coagulation responses to acute mental stress and recovery in men. Thromb. Haemost. 2004, 92, 1327–1335. [Google Scholar]
- Kelsey, R.M. Habituation of cardiovascular reactivity to psychological stress: Evidence and implications. In Cardiovascular Reactivity to Psychological Stress and Disease; Blascovich, J., Katkin, E.S., Eds.; American Psychological Association: Washington, DC, USA, 1993; pp. 135–153. [Google Scholar]
- Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- Mitsar Brain Diagnostics Solutions. Available online: https://mitsar-eeg.com/ (accessed on 27 August 2022).
- Mitsar EEG Studio Acquisition. Available online: https://mitsar-eeg-studio-acquisition.software.informer.com/download/ (accessed on 27 August 2022).
- Matlab, MathWorks. Available online: https://www.mathworks.com/products/matlab.html (accessed on 27 August 2022).
- Oja, E.; Hyvarinen, A. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar]
- Betti, S.; Lova, R.M.; Rovini, E.; Acerbi, G.; Santarelli, L.; Cabiati, M.; Del Ry, S.; Cavallo, F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans. Biomed. Eng. 2017, 65, 1748–1758. [Google Scholar]
- Hayashi, T.; Okamoto, E.; Nishimura, H.; Mizuno-Matsumoto, Y.; Ishii, R.; Ukai, S. Beta activities in EEG associated with emotional stress. Int. J. Intell. Comput. Med. Sci. Image Process. 2009, 3, 57–68. [Google Scholar] [CrossRef]
Subject | Age | Gender | Nationality |
---|---|---|---|
S1 | 22 | Male | Polish |
S2 | 24 | Male | Polish |
S3 | 24 | Female | Polish |
S4 | 22 | Male | Polish |
S5 | 24 | Male | Polish |
S6 | 23 | Male | Polish |
S7 | 22 | Male | Ukraine |
S8 | 23 | Male | Polish |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejer, I.; Wacewicz, D.; Schab, M.; Romanowski, B.; Łukasiewicz, K.; Maciaszczyk, M. Stressors Length and the Habituation Effect—An EEG Study. Sensors 2022, 22, 6862. https://doi.org/10.3390/s22186862
Rejer I, Wacewicz D, Schab M, Romanowski B, Łukasiewicz K, Maciaszczyk M. Stressors Length and the Habituation Effect—An EEG Study. Sensors. 2022; 22(18):6862. https://doi.org/10.3390/s22186862
Chicago/Turabian StyleRejer, Izabela, Daniel Wacewicz, Mateusz Schab, Bartosz Romanowski, Kacper Łukasiewicz, and Michał Maciaszczyk. 2022. "Stressors Length and the Habituation Effect—An EEG Study" Sensors 22, no. 18: 6862. https://doi.org/10.3390/s22186862
APA StyleRejer, I., Wacewicz, D., Schab, M., Romanowski, B., Łukasiewicz, K., & Maciaszczyk, M. (2022). Stressors Length and the Habituation Effect—An EEG Study. Sensors, 22(18), 6862. https://doi.org/10.3390/s22186862