Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Finding the Location of Leakage
3.2. Calculating the Size of Leakage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadzri, M.M.M.; Ahmad, A. Design Issues and Challenges of Long-Range Ultrasonic Testing (LRUT) for Pipeline Inspection. In Proceedings of the 12th National Technical Seminar on Unmanned System Technology, Kuala Lumpur, Malaysia, 27–28 October 2020; pp. 115–126. [Google Scholar]
- Butterfield, J.D.; Meruane, V.; Collins, R.P.; Meyers, G.; Beck, S.B. Prediction of leak flow rate in plastic water distribution pipes using vibro-acoustic measurements. Struct. Health Monit. 2018, 17, 959–970. [Google Scholar] [CrossRef]
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Davis, P.; Brockhurst, J. Subsea pipeline infrastructure monitoring: A framework for technology review and selection. Ocean. Eng. 2015, 104, 540–548. [Google Scholar] [CrossRef]
- Ong, K.; Png, W.; Lin, H.; Pua, C.; Rahman, F. Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection. In Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 18–21 October 2017; pp. 167–171. [Google Scholar]
- Zhang, J.; Lian, Z.; Zhou, Z.; Song, Z.; Liu, M.; Yang, K. Leakage detection in a buried gas pipeline based on distributed optical fiber time-domain acoustic wave signal. Eng. Fail. Anal. 2022, 141, 106594. [Google Scholar] [CrossRef]
- Yi-lai, M.; Jin-zhong, C.; Jian, L.; Guan-nan, S. Structure Design of Magnetization Device of Magnetic Leakage Internal Detector for Small-Diameter Oil and Gas Pipeline. In Proceedings of the 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 22–24 January 2021; pp. 111–114. [Google Scholar]
- Frittelli, J.; Andrews, A.; Parfomak, P.W.; Pirog, R.; Ramseur, J.L.; Ratner, M. US Rail Transportation of Crude Oil: Background and Issues for Congress; Congressional Research Service: Washington, DC, USA, 2014; Volume 4.
- Li, G.; Zhu, J.; Sun, R.; Lin, X.; Yang, W.; Zeng, K.; Wang, F.; Wang, C.; Zhou, B. Pipe line safety monitoring using distributed optical fiber vibration sensor in the China west-east gas pipeline project. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou, China, 26–29 October 2018; p. Su2A. 70. [Google Scholar]
- Bolotina, I.; Borikov, V.; Ivanova, V.; Mertins, K.; Uchaikin, S. Application of phased antenna arrays for pipeline leak detection. J. Pet. Sci. Eng. 2018, 161, 497–505. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Shen, S.-C.; Lee, C.-Y.; Chen, Y.-J. A Self-Powered Strain Sensor Applied to Real-Time Monitoring for Movable Structures. Sensors 2022, 22, 6084. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xiao, Y.; Liu, X.; Liu, G.; Jiang, W.; Qin, J. Time-frequency distribution map-based convolutional neural network (CNN) model for underwater pipeline leakage detection using acoustic signals. Sensors 2020, 20, 5040. [Google Scholar] [CrossRef] [PubMed]
- Eastvedt, D.; Naterer, G.; Duan, X. Detection of faults in subsea pipelines by flow monitoring with regression supervised machine learning. Process Saf. Environ. Prot. 2022, 161, 409–420. [Google Scholar] [CrossRef]
- Aloqaily, A. Cross Country Pipeline Risk Assessments and Mitigation Strategies; Gulf Professional Publishing: Houston, TX, USA, 2018. [Google Scholar]
- Ho, M.; El-Borgi, S.; Patil, D.; Song, G. Inspection and monitoring systems subsea pipelines: A review paper. Struct. Health Monit. 2020, 19, 606–645. [Google Scholar] [CrossRef]
- Wang, X.; Simpson, A.; Lambert, M.; Vítkovský, J. Leak detection in pipeline systems using hydraulic methods: A review. In Proceedings of the Conference on Hydraulics in Civil Engineering, the Institutuion of Engineers, Hobart, Australia, 28–30 November 2001; pp. 23–30. [Google Scholar]
- Hough, J.E. Leak testing of pipelines uses pressure and acoustic velocity. Oil Gas J. 1988, 86, 35–41. [Google Scholar]
- Sood, R.; Kaur, M.; Lenka, H. Design and development of automatic water flow meter. Int. J. Comput. Sci. Eng. Appl. 2013, 3, 49. [Google Scholar]
- Gosavi, G.; Gawde, G.; Gosavi, G. Smart water flow monitoring and forecasting system. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1218–1222. [Google Scholar]
- Kolhare, N.; Thorat, P. An approach of flow measurement in solar water heater using turbine flow meter. Int. J. Comput. Technol. 2013, 4, 1–4. [Google Scholar] [CrossRef][Green Version]
- Liu, L.; Yang, L.; Gao, S. Propagation Characteristics of Magnetic Tomography Method Detection Signals of Oil and Gas Pipelines Based on Boundary Conditions. Sensors 2022, 22, 6065. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zeng, Z.; Huang, X.; Li, J.; Feng, H. Pipeline leak detection based on variational mode decomposition and support vector machine using an interior spherical detector. Process Saf. Environ. Prot. 2021, 153, 167–177. [Google Scholar] [CrossRef]
- Kim, J.; Chae, M.; Han, J.; Park, S.; Lee, Y. The development of leak detection model in subsea gas pipeline using machine learning. J. Nat. Gas Sci. Eng. 2021, 94, 104134. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, M.; Yu, T.; Yan, B.; Zhou, X.; Yu, F.; Zhang, J.; Qiao, L.; Wang, T. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J. 2020, 20, 7870–7877. [Google Scholar] [CrossRef]
Flowrate of Hall Sensor (L/h) | Flowrate of Pipeline (L/h) | Proportion |
---|---|---|
32 | 604 | 0.053 |
45 | 928 | 0.048 |
52 | 1231 | 0.042 |
72 | 1382 | 0.052 |
85 | 1951 | 0.044 |
Sensor A (L/h) | Sensor B (L/h) | Sensor C (L/h) | Flowrate in the Leakage (cm3/s) | Flow Velocity in Leakage (cm/s) | Leakage Area (cm2) |
---|---|---|---|---|---|
82.8 | 44.5 | 44.5 | 226.36 | 79.03 | 2.86 |
67.6 | 31.5 | 31.5 | 213.36 | 72.66 | 2.94 |
43.08 | 20 | 20 | 136.41 | 69.96 | 1.95 |
Sensor A (L/h) | Sensor B (L/h) | Sensor C (L/h) | Flowrate in the Leakage (cm3/s) | Flow Velocity in Leakage (cm/s) | Leakage Area (cm2) |
---|---|---|---|---|---|
82.8 | 62 | 44.5 | 122.93 | 79.03 | 1.56 |
67.6 | 50.5 | 31.5 | 101.06 | 72.66 | 1.39 |
43.08 | 31.65 | 20 | 67.55 | 69.96 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Shen, S.-C.; Wu, Y.-K.; Lee, C.-Y.; Chen, Y.-J. Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors 2022, 22, 6846. https://doi.org/10.3390/s22186846
Chen Y-H, Shen S-C, Wu Y-K, Lee C-Y, Chen Y-J. Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors. 2022; 22(18):6846. https://doi.org/10.3390/s22186846
Chicago/Turabian StyleChen, Yung-Hsu, Sheng-Chih Shen, Yan-Kuei Wu, Chun-Yen Lee, and Yen-Ju Chen. 2022. "Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline" Sensors 22, no. 18: 6846. https://doi.org/10.3390/s22186846
APA StyleChen, Y.-H., Shen, S.-C., Wu, Y.-K., Lee, C.-Y., & Chen, Y.-J. (2022). Design and Testing of Real-Time Sensing System Used in Predicting the Leakage of Subsea Pipeline. Sensors, 22(18), 6846. https://doi.org/10.3390/s22186846