Compact Slot Microring Resonator for Sensitive and Label-Free Optical Sensing
Abstract
:1. Introduction
2. Structure and Principle
2.1. Structure Design
2.2. Operation Principle
3. Simulation and Analysis
3.1. Structure Optimization
3.2. Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sepúlveda, B.; Del Río, J.S.; Moreno, M.; Blanco, F.J.; Mayora, K.; Domínguez, C.; Lechuga, L.M. Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices. J. Opt. A Pure Appl. Opt. 2006, 8, S561–S566. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Gavela, A.F.; García, D.G.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef]
- Onorato, G.; Persichetti, G.; Grimaldi, I.A.; Testa, G.; Bernini, R. Optical fiber fuel level sensor for aeronautical applications. Sens. Actuators A Phys. 2017, 260, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Luo, Y.; Yang, Z.; Zhang, W.; Li, L.; Xu, P.; Zhang, P.; Xu, T. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Opt. Express 2022, 30, 3866–3875. [Google Scholar] [PubMed]
- Sun, X.; Dai, D.; Thylén, L.; Wosinski, L. High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt. Express 2015, 23, 25688–25699. [Google Scholar] [CrossRef]
- Sakamoto, H.; Minpou, Y.; Sawai, T.; Enami, Y.; Suye, S. A novel optical biosensing system using Mach–Zehnder-type optical waveguide for influenza virus detection. Appl. Biochem. Biotechnol. 2016, 178, 687–694. [Google Scholar] [CrossRef]
- Bitarafan, M.H.; DeCorby, R.G. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information. Sensors 2017, 17, 1748. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Tomitaka, A.; Manickam, P.; Kaushik, A.; Bhansali, S.; Nair, M.; Pala, N. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells. Biomed. Opt. Express 2018, 9, 373–386. [Google Scholar]
- Prabhathan, P.; Murukeshan, V.M.; Jing, Z.; Ramana, P.V. Compact SOI nanowire refractive index sensor using phase shifted bragg grating. Opt. Express 2009, 17, 15330–15341. [Google Scholar] [CrossRef]
- Ruan, Z.; Shen, L.; Zheng, S.; Wang, J. Subwavelength grating slot (SWGS) waveguide on silicon platform. Opt. Express 2017, 25, 18250–18264. [Google Scholar] [CrossRef] [PubMed]
- Carlborg, C.F.; Gylfason, K.B.; Kaźmierczak, A.; Dortu, F.; Bañuls Polo, M.J.; Maquieira Catala, A.; Kresbach, G.M.; Sohlström, H.; Moh, T.; Vivien, L.; et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip 2010, 10, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A. Integrated microring resonator sensor arrays for labs-on-chips. Anal. Bioanal. Chem. 2012, 403, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Adar, R.; Serbin, M.R.; Mizrahi, V. Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator. J. Lightwave Technol. 1994, 12, 1369–1372. [Google Scholar] [CrossRef]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 2014, 1, 153–157. [Google Scholar] [CrossRef]
- Ciminelli, C.; Innone, F.; Brunetti, G.; Conteduca, D.; Dell’Olio, F.; Tatoli, T.; Armenise, M.N. Rigorous model for the design of ultra-high Q-factor resonant cavities. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar]
- Liu, K.; Jin, N.; Cheng, H.; Chauhan, N.; Puckett, M.W.; Nelson, K.D.; Behunin, R.O.; Rakich, P.T.; Blumenthal, D.J. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 2022, 47, 1855–1858. [Google Scholar] [CrossRef]
- Fard, S.T.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Grist, S.M.; TalebiFrad, P.; Wu, Y.; Bojko, R.J.; Kwok, E.; Jaeger, N.A.F.; et al. Performance of ultra-thin SOI-based resonators for sensing applications. Opt. Express 2014, 22, 14166–14179. [Google Scholar] [CrossRef]
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610–7615. [Google Scholar] [CrossRef]
- Urbonas, D.; Balčytis, A.; Vaškevičius, K.; Gabalis, M.; Petruškevičius, R. Air and dielectric bands photonic crystal microringresonator for refractive index sensing. Opt. Lett. 2016, 41, 3655–3658. [Google Scholar] [CrossRef]
- Lo, S.M.; Hu, S.; Gaur, G.; Kostoulas, Y.; Weiss, S.M.; Fauchet, P.M. Photonic crystal microring resonator for label-free biosensing. Opt. Express 2017, 25, 7046–7054. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, S.; Kong, M. Air-mode photonic crystal micro-ring resonator with enhanced quality factor for refractive index sensing. IEEE Photonics J. 2020, 12, 6601111. [Google Scholar] [CrossRef]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672–15686. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Huang, L.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. Opt. Express 2016, 24, 29724–29733. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Gao, D.; Zhang, M.; Zhang, D. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Opt. Express 2017, 25, 20911–20922. [Google Scholar] [CrossRef]
- Singh, R.R.; Kumari, S.; Gautam, A.; Priye, V. Glucose sensing using slot waveguide based SOI ring resonator. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 7300608. [Google Scholar]
- Yuan, G.; Gao, L.; Chen, Y.; Liu, X.; Wang, J.; Wang, Z. Improvement of optical sensing performances of a double-slot-waveguide-based ring resonator sensor on silicon-on-insulator platform. Optik 2014, 125, 850–854. [Google Scholar]
- Zhao, C.; Zhang, L.; Zhang, C. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing. Opt. Commun. 2018, 414, 212–216. [Google Scholar] [CrossRef]
- Wu, N.; Xia, L. High-Q and high-sensitivity multi-hole slot microring resonator and its sensing performance. Phys. Scr. 2019, 94, 115512. [Google Scholar] [CrossRef]
- Gu, H.; Gong, H.; Wang, C.; Sun, X.; Wang, X.; Yi, Y.; Chen, C.; Wang, F.; Zhang, D. Compact inner-wall grating slot microring resonator for label-free sensing. Sensors 2019, 19, 5038. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar]
- Mere, V.; Muthuganesan, H.; Kar, Y.; Kruijsdijk, C.V.; Selvaraja, S.K. On-chip chemical sensing using slot-waveguide based ring resonator. IEEE Sens. J. 2020, 20, 5970–5975. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Qin, S.; Wang, T.; Liu, F.; Qiu, M.; Su, Y. Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators. Appl. Opt. 2009, 48, F90–F94. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; De Heyn, P.; Vaerenbergh, T.V.; De Vos, K.; Selvaraja, S.K.; Claes, T.; Dumon, P.; Bienstman, P.; Thourhout, D.V.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Liang, D.; Dai, D. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Opt. Express 2019, 27, 416–422. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Brunetti, G.; Conteduca, D.; Armenise, M.N. New microwave photonic filter based on a ring resonator including a photonic crystal structure. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar]
- Anderson, P.A.; Schmidt, B.S.; Lipson, M. High confinement in silicon slot waveguides with sharp bends. Opt. Express 2006, 14, 9197–9202. [Google Scholar] [CrossRef] [PubMed]
- Kargar, A.; Chao, C.-Y. Design and optimization of waveguide sensitivity in slot microring sensors. J. Opt. Soc. Am. A 2011, 28, 596–603. [Google Scholar] [CrossRef]
- Sun, F.; Dong, B.; Wei, J.; Ma, Y.; Tian, H.; Lee, C. Demonstration of mid-infrared slow light one-dimensional photonic crystal ring resonator with high-order photonic bandgap. Opt. Express 2020, 28, 30736–30747. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yuan, J.; Ma, T.; Sang, X.; Yan, B.; Wang, K.; Yu, C. Design and optimization of silicon concentric dual-microring resonators for refractive index sensing. Opt. Commun. 2017, 395, 212–216. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Bus waveguide width (Wstrip) | 320 nm |
Radius of bent-strip waveguide (R0) | 5.69 μm |
Outer ring waveguide width (Wout) | 250 nm |
Slot width (Wslot) | 140 nm |
Inner ring waveguide width (Win) | 270 nm |
Ring radius (R) | 5 μm |
Waveguide height (h) | 220 nm |
Coupling gap (Wgap) | 200 nm |
Coupling angle (θ) | 36° |
Structure | Footprint | Wslot (nm) | Q-Factor | Analyte Detected | SV (nm/RIU) | LOD | Reference | Note |
---|---|---|---|---|---|---|---|---|
GeSbSe SMRR | 120 μm × 120 μm | 50 | 10,000 | NaCl solutions | 471 | 3.3 × 10−4 RIU | [5] | |
SOI MRR | 13 μm × 10 μm | \ | 20,000 | Proteins | 70 | 10 ng/ml | [19] | |
Photonic crystal MRR | \ | \ | 9300 | \ | 200 | \ | [22] | Simulation |
Grating-type MRR | \ | \ | 12,900 | Glucose solutions | 363 | 5.46 × 10−5 RIU | [25] | |
Double-slot-waveguide-based MRR | 25 μm × 15 μm | 100 | 580 | NaCl solutions | 708 | \ | [27] | Simulation |
SOI SMRR | 15 μm × 8.5 μm | 100 | 2000 | NaCl solutions | 297.13 | 1.1 × 10−4 RIU | [28] | |
SOI SMRR | 12 μm × 12 μm | 60 | 126,133 | \ | 480.4 | 2.6 × 10−5 RIU | [29] | Simulation |
SOI SMRR | \ | 100 | \ | Glucose solutions | 360 | \ | [26] | Simulation |
SOI SMRR | 13 μm × 10 μm | 104 | 330 | Proteins | 298 | 4.2 × 10−5 RIU | [31] | |
Concentric dual-MRRs | 27.646 μm2 | 200 (ring-ring air gap) | \ | DNA | 683 | \ | [33] | Simulation |
\ | 400 (ring-ring air gap) | \ | Sucrose solutions | 180 | 1.1 × 10−5 RIU | [40] | Simulation | |
SOI SMRR | 60 μm × 60 μm | 120 | 1900 | Chemical liquids | 476 | 1.05 × 10−5 RIU | [32] | |
SOI SMRR | 10 μm × 10 μm | 140 | 1113 | NaCl solutions | 403 | 0.129% | Our work | Simulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Chen, X.; Cai, Y.; Zhang, S.; Wang, T.; Wang, Y. Compact Slot Microring Resonator for Sensitive and Label-Free Optical Sensing. Sensors 2022, 22, 6467. https://doi.org/10.3390/s22176467
Shi B, Chen X, Cai Y, Zhang S, Wang T, Wang Y. Compact Slot Microring Resonator for Sensitive and Label-Free Optical Sensing. Sensors. 2022; 22(17):6467. https://doi.org/10.3390/s22176467
Chicago/Turabian StyleShi, Bingyao, Xiao Chen, Yuanyuan Cai, Shuai Zhang, Tao Wang, and Yiquan Wang. 2022. "Compact Slot Microring Resonator for Sensitive and Label-Free Optical Sensing" Sensors 22, no. 17: 6467. https://doi.org/10.3390/s22176467
APA StyleShi, B., Chen, X., Cai, Y., Zhang, S., Wang, T., & Wang, Y. (2022). Compact Slot Microring Resonator for Sensitive and Label-Free Optical Sensing. Sensors, 22(17), 6467. https://doi.org/10.3390/s22176467