Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polymers
2.1.2. Reagents
2.2. Preparation of Polymeric Materials
2.3. Preparation of Platelets
2.4. Platelets Incubation on Polymeric Materials
2.5. Characterization and Analysis
3. Results and Discussion
3.1. Materials Characterization
3.2. Characterization of Platelets with SEM
3.3. Characterization of Platelets with Confocal Microscopy
3.4. Characterization of Platelets with AFM
3.5. Comparison among Different Imaging Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castro-Giner, F.; Gkountela, S.; Donato, C.; Alborelli, I.; Qualgliata, L.; Ng, C.K.Y.; Piscuoglio, S.; Aceto, N. Cancer Diagnosis Using a Liquid Biopsy: Challenges and Expectations. Diagnostics 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Xu, J.; Zhang, K.; Gu, W.; Nie, L.; Wang, G.; Luo, Y. Refining Cancer Management Using Integrated Liquid Biopsy. Theranostics 2020, 10, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.; Ribeiro, I.; Jorge, J.; Gonçalves, A.; Sarmento-Ribeiro, A.; Melo, J.; Carreira, I. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Bunda, S.; Zuccato, J.; Voisin, M.; Wang, J.; Nassiri, F.; Patil, V.; Mansouri, S.; Zadeh, G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int. J. Mol. Sci. 2021, 22, 4548. [Google Scholar] [CrossRef]
- Lianidou, E.; Pantel, K. Liquid biopsies. Genes Chromosomes Cancer 2019, 58, 219–232. [Google Scholar] [CrossRef]
- Malara, N.; Trunzo, V.; Foresta, U.; Amodio, N.; de Vitis, S.; Roveda, L.; Fava, M.; Coluccio, M.; Macrì, R.; di Vito, A.; et al. Ex-vivo characterization of circulating colon cancer cells distinguished in stem and differentiated subset provides useful biomarker for personalized metastatic risk assessment. J. Transl. Med. 2016, 14, 133. [Google Scholar] [CrossRef] [Green Version]
- Antunes-Ferreira, M.; Koppers-Lalic, D.; Wuerdinger, T. Circulating platelets as liquid biopsy sources for cancer detection. Mol. Oncol. 2021, 15, 1727–1743. [Google Scholar] [CrossRef]
- Ghoshal, K.; Bhattacharyya, M. Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis. Sci. World J. 2014, 2014, 781857. [Google Scholar] [CrossRef] [Green Version]
- Montague, S.; Lim, J.; Lee, W.; Gardiner, E. Imaging Platelet Processes and Function—Current and Emerging Approaches for Imaging in vitro and in vivo. Front. Immunol. 2020, 11, 78. [Google Scholar] [CrossRef]
- Best, M.; Wesseling, P.; Wurdinger, T. Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. Cancer Res. 2018, 78, 3407–3412. [Google Scholar] [CrossRef] [Green Version]
- Sabrkhany, S.; Kuijpers, M.; Egbrink, M.O.; Griffioen, A. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev. 2021, 40, 563–573. [Google Scholar] [CrossRef]
- Best, M.G.; Sol, N.; Kooi, I.E.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Iliescu, F.; Poenar, D.; Yu, F.; Ni, M.; Chan, K.; Cima, I.; Taylor, H.; Cima, I.; Iliescu, C. Recent advances in microfluidic methods in cancer liquid biopsy. Biomicrofluidics 2019, 13, 041503. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Han, J.; Michael, I.; Ki, D.; Sunkara, V.; Park, J.; Gautam, S.; Ha, H.; Zhang, L.; Cho, Y. Human Platelet Membrane Functionalized Microchips with Plasmonic Codes for Cancer Detection. Adv. Funct. Mater. 2019, 29, 1902669. [Google Scholar] [CrossRef]
- Razmi, N.; Baradaran, B.; Hejazi, M.; Hasanzadeh, M.; Mosafer, J.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens. Bioelectron. 2018, 113, 58–71. [Google Scholar] [CrossRef]
- Nayak, S.; Blumenfeld, N.; Laksanasopin, T.; Sia, S. Point-of-Care Diagnostics: Recent Developments in a Connected Age. Anal. Chem. 2017, 89, 102–123. [Google Scholar] [CrossRef] [Green Version]
- Potrich, C.; Lunelli, L.; Cocuzza, M.; Marasso, S.L.; Pirri, C.; Pederzolli, C. Simple PDMS microdevice for biomedical applications. Talanta 2018, 193, 44–50. [Google Scholar] [CrossRef]
- Goodman, S. Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. J. Biomed. Mater. Res. 1999, 35, 240–250. [Google Scholar] [CrossRef]
- Forti, S.; Lunelli, L.; della Volpe, C.; Siboni, S.; Pasquardini, L.; Lui, A.; Canteri, R.; Vanzetti, L.; Potrich, C.; Vinante, M.; et al. Hemocompatibility of pyrolytic carbon in comparison with other biomaterials. Diam. Relat. Mater. 2011, 20, 762–769. [Google Scholar] [CrossRef]
- Lamponi, S.; Aloisi, A.; Barbucci, R. The role of Fbg in platelet adhesion to polymeric materials in conditions of psychological stress. Biomaterials 1999, 20, 1791–1797. [Google Scholar] [CrossRef]
- Weber, N.; Wendel, H.; Kohn, J. Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion. J. Biomed. Mater. Res. Part A 2005, 72A, 420–427. [Google Scholar] [CrossRef]
- Sharma, C. Bolood-compatible materials: A perspective. J. Biomater. Appl. 2001, 15, 359–381. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, M.; Yuan, L.; Zhang, J.; Hou, Z. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane. Polymers 2018, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Skarja, G.; Brash, J. Physicochemical properties and platelet interactions ofsegmented polyurethanes containing sulfonate groups inthe hard segment. J. Biomed. Mater. Res. 1997, 34, 439–455. [Google Scholar] [CrossRef]
- Li, P.; Cai, W.; Li, X.; Wang, K.; Zhou, L.; You, T.; Wang, R.; Chen, H.; Zhao, Y.; Wang, J.; et al. Preparation of phospholipid-based polycarbonate urethanes for potential applications of blood-contacting implants. Regen. Biomater. 2020, 7, 491–504. [Google Scholar] [CrossRef]
- Kuźmińska, A.; Wojciechowska, A.; Butruk-Raszeja, B. Vascular Polyurethane Prostheses Modified with a Bioactive Coating—Physicochemical, Mechanical and Biological Properties. Int. J. Mol. Sci. 2021, 22, 12183. [Google Scholar] [CrossRef]
- Mannuss, S. Influence of different methods and anticoagulants on platelet parameter measurement. J. Lab. Med. 2020, 44, 255–272. [Google Scholar] [CrossRef]
- Dastjerdi, M.; Emami, T.; Najafian, A.; Amini, M. Mean platelet volume measurement, EDTA or citrate? Hematology 2006, 11, 317–319. [Google Scholar] [CrossRef]
- Bürker, K. über weitere Verbesserungen der Methode zur ZÄhlung roter Blutkörperchen nebst einigen ZÄhlresultaten. Pflüger’s Arch. 1911, 142, 337–371. [Google Scholar] [CrossRef]
- Benedetti, M.; Torresani, E.; Leoni, M.; Fontanari, V.; Bandini, M.; Pederzolli, C.; Potrich, C. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J. Mech. Behav. Biomed. Mater. 2017, 71, 295–306. [Google Scholar] [CrossRef]
- Shirley, D. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Speranza, G.; Canteri, R. RxpsG a new open project for Photoelectron and Electron Spectroscopy data processing. SoftwareX 2019, 10, 100282. [Google Scholar] [CrossRef]
- Stalder, A.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. A Snake-Based Approach to Accurate Determination of Both Contact Points and Contact Angles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 286, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Mancini, R.; Fedele, P.; Curigliano, G.; Flamini, G.; Giovagnoli, M.; Malara, N.; Boninsegna, A.; Vecchione, A.; Santella, R.; et al. Immunohistochemical analysis of 4-aminobiphenyl-DNA adducts in oral mucosal cells of smok-ers and nonsmokers. Anticancer Res. 1997, 17, 2827–2830. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH image to imagej: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Tsao, C.; Hromada, L.; Liu, J.; Kumar, P.; DeVoe, D. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 2007, 7, 499–505. [Google Scholar] [CrossRef]
- Nathawat, R.; Kumar, A.; Acharya, N.; Vijay, Y. XPS and AFM surface study of PMMA irradiated by electron beam. Surf. Coat. Technol. 2009, 203, 2600–2604. [Google Scholar] [CrossRef]
- Santini, G.; Potrich, C.; Lunelli, L.; Vanzetti, L.; Marasso, S.; Cocuzza, M.; Pirri, C.; Pederzolli, C. miRNA purification with an optimized PDMS microdevice: Toward the direct purification of low abundant circulating biomarkers. Biophys. Chem. 2017, 229, 142–150. [Google Scholar] [CrossRef]
- Wägli, P.; Homsy, A.; de Rooij, N. Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents. Sens. Actuators B 2011, 156, 994–1001. [Google Scholar] [CrossRef]
- el Fissi, L.; Vandormael, D.; Houssiau, L.; Francis, L. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO2 thin film. Appl. Surf. Sci. 2016, 363, 670–675. [Google Scholar] [CrossRef]
- Liu, L.; Fei, T.; Guan, X.; Zhao, H.; Zhang, T. Highly sensitive and chemically stable NH3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosens. Bioelectron. 2021, 191, 113459. [Google Scholar] [CrossRef]
- Ju, J.; Wang, T.; Wang, Q. Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 151–157. [Google Scholar] [CrossRef]
- Lin, C.; Yeh, Y.; Lin, W.; Yang, M. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf. B Biointerfaces 2014, 123, 986–994. [Google Scholar] [CrossRef]
- Seo, J.; Lee, L. Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sens. Actuators B Chem. 2006, 119, 192–198. [Google Scholar] [CrossRef]
- Roy, S.; Yue, C.; Lam, Y.; Wang, Z.; Hu, H. Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sens. Actuators B Chem. 2010, 150, 537–549. [Google Scholar] [CrossRef]
- Tan, G.; Chen, R.; Ning, C.; Zhang, L.; Ruan, X.; Liao, J. Effects of Argon Plasma Treatment on SurfaceCharacteristic of PhotopolymerizationPEGDA–HEMA Hydrogels. J. Appl. Polym. Sci. 2012, 124, 459–465. [Google Scholar] [CrossRef]
- Paul, A.; Straub, A.; Weber, N.; Ziemer, G.; Wendel, H. CD41 Western blotting: A new method to detect platelet adhesion to artificial surfaces used in extracorporeal circulation procedures. J. Mater. Sci. Mater. Med. 2009, 20, 373–378. [Google Scholar] [CrossRef]
- Muthusubramaniam, L.; Lowe, R.; Fissell, W.; Li, L.; Marchant, R.; Desai, T.; Roy, S. Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications. Ann. Biomed. Eng. 2011, 39, 1296–1305. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, S.; Elsabaawy, M.; Eltabakh, M.; Hammad, R.; Bedair, H. CD62P (P-selectin) expression as a platelet activation marker in patients with liver cirrhosis with and without cholestasis. Clin. Exp. Hepatol. 2021, 7, 231–240. [Google Scholar] [CrossRef]
- Shen, L.; Yang, T.; Xia, K.; Yan, Z.; Tan, J.; Li, L.; Qin, Y.; Shi, W. P-selectin (CD62P) and soluble TREM-like transcript-1 (sTLT-1) are associated with coronary artery disease: A case control study. BMC Cardiovasc. Disord. 2020, 20, 387. [Google Scholar] [CrossRef]
- Robin, C.; Ottersbach, K.; Boisset, J.; Oziemlak, A.; Dzierzak, E. CD41 is developmentally regulated and differentially expressed on mouse hematopoietic stem cells. Blood 2011, 117, 5088–5091. [Google Scholar] [CrossRef] [Green Version]
- George, J. Platelets. Lancet 2000, 355, 1531–1539. [Google Scholar] [CrossRef]
- Perozziello, G.; Simone, G.; Candeloro, P.; Gentile, F.; Malara, N.; Larocca, R.; Coluccio, M.; Pullano, S.; Tirinato, L.; Geschke, O.; et al. A Fluidic Motherboard for Multiplexed Simultaneous and Modular Detection in Microfluidic Systems for Biological Application. Micro Nanosyst. 2010, 2, 227–238. [Google Scholar] [CrossRef] [Green Version]
Polymer Name | Polymer Description | Typical Use in Microfabrication | Deposition/Fabrication |
---|---|---|---|
COC | cyclic olefin copolymer | microsystems, low fabrication cost | CNC milling from sheets |
PMMA | polymethyl methacrylate | microsystems, low fabrication cost | CNC milling from sheets |
NOA81 | Norland Optical Adhesive 81 (mercapto-ester resin) | bonding technology | replica molding—UV curing |
PDMS | polydimethylsiloxane | prototyping, small batch production | replica molding |
PEGDA | poly (ethylene glycol) diacrylate PEGDA250 | 3D printing technology | LED 3D printing—UV post curing |
SpotGP | acrylate-based photoactive resin | 3D printing technology | laser stereolithography |
TG | silicone polyether acrylate TEGORAD2800 | 3D printing technology | LED 3D printing—UV post curing |
Polymer | O 1s (%) | N 1s (%) | C 1s (%) | S 2p (%) | Si 2p (%) |
---|---|---|---|---|---|
COC | 22.2 | - | 77. | 0.2 | 0.5 |
PMMA | 23.8 | - | 73.7 | - | 0.5 |
NOA81 | 29.7 | 5.6 | 58.4 | 5.4 | 1.0 |
PDMS | 33.4 | - | 53.4 | - | 13.2 |
PEGDA | 27.6 | 60.4 | - | 12.0 | |
SpotGP | 23.7 | 0.9 | 74.7 | - | 0.6 |
TG | 27.1 | - | 60.0 | - | 12.9 |
Polymer | CA (°) | RMS (nm) |
---|---|---|
COC | 85.8 ± 4.87 | 5.0 ± 1.0 |
PMMA | 79.1 ± 8.8 | 14.6 ± 0.7 |
NOA81 | 66.0 ± 2.0 | 3.3 ± 1.2 |
PDMS | 112.0 ± 12.2 | - |
PEGDA | 90.3 ± 5.7 | - |
SpotGP | 71.8 ± 5.9 | 76.0 ± 3.6 |
TG | 101.0 ± 8.2 | 61.4 ± 15.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potrich, C.; Frascella, F.; Bertana, V.; Barozzi, M.; Vanzetti, L.; Piccoli, F.; Cristallo, A.F.; Malara, N.; Pirri, C.F.; Pederzolli, C.; et al. Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. Sensors 2022, 22, 4788. https://doi.org/10.3390/s22134788
Potrich C, Frascella F, Bertana V, Barozzi M, Vanzetti L, Piccoli F, Cristallo AF, Malara N, Pirri CF, Pederzolli C, et al. Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. Sensors. 2022; 22(13):4788. https://doi.org/10.3390/s22134788
Chicago/Turabian StylePotrich, Cristina, Francesca Frascella, Valentina Bertana, Mario Barozzi, Lia Vanzetti, Federico Piccoli, Attilio Fabio Cristallo, Natalia Malara, Candido Fabrizio Pirri, Cecilia Pederzolli, and et al. 2022. "Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy" Sensors 22, no. 13: 4788. https://doi.org/10.3390/s22134788
APA StylePotrich, C., Frascella, F., Bertana, V., Barozzi, M., Vanzetti, L., Piccoli, F., Cristallo, A. F., Malara, N., Pirri, C. F., Pederzolli, C., & Lunelli, L. (2022). Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. Sensors, 22(13), 4788. https://doi.org/10.3390/s22134788