Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades
Abstract
:1. Introduction
2. Research Area
2.1. Geographical Characteristics
2.2. Climate Changes
3. Materials and Methods
3.1. Source Data and Processing Methods
3.2. Data Accuracy
3.3. Other New Methods
4. Results
4.1. Changes in the Glaciers’ Ranges
4.2. Changes in the Glaciers’ Thicknesses
4.3. Other Characteristics of the Glacier Thickness Changes
4.4. Impact of Glacier Surface Slope and Ice Thickness Reduction on the Range Changes
5. Discussion
5.1. Changes in the Geometry of Glaciers
5.2. Differences in the Equilibrium Line Altitude (ELA)
5.3. Atmospheric and Geometric Influences
6. Conclusions
- In ASPA No. 128 during the period between 1956 and 2015, there was a significant recession of the glaciers’ fronts and a decrease in their thicknesses. Climate changes (mainly an increase in air temperature) are the primary cause of the observed glaciers’ recession and progressive deglaciation.
- In the period 2001–2013, the glacier thickness reduction only occurred in the frontal zone of the glaciers and reached a maximum of approximately 30 m, irrespective of their different morphologies. In this area, the average annual reduction in elevation in this period was 1.5–2.3 m a−1 (for the Ecology Glacier and the northern part of Baranowski Glacier) and 0.8–2.3 m a−1 (for the southern part of the Baranowski Glacier and Sphinx Glacier).
- The morphology of glaciers is a major element affecting the recession rate of their fronts. Acceleration of this rate is particularly dependent on the presence of the ice-cliff front because of the calving process which increase ablation. In the period 2001-2015, the Ecology Glacier and the northern part of the Baranowski Glacier are characterized by the ice-cliff front and have recession rates of 15–25 m a−1 and 10–20 m a−1, respectively. These rates are significantly higher than the rate of recession for the same period, estimated as 5–10 m a−1 for the southern part of the Baranowski Glacier and Sphinx Glacier, which are glaciers with fronts ending gently on the land.
- More rapid acceleration of recession occurs when the front is in contact with water, because of the water’s additional impact on the ice melting at the base of the front, resulting in even more calving. This is confirmed by the difference between the rate of tidewater in Ecology Glacier’s recession, and the recession rate of the northern part of the Baranowski Glacier, which also has an ice-cliff front but ends on the land.
- Despite the same size of the thickness reduction for all glaciers, the Ecology Glacier has a much larger thickness reduction zone, which also reaches much higher and further from the front. This is probably due to the different thermal structure of this glacier compared to others.
- The longitudinal slope of the glaciers’ surfaces is the connector between the rate (and consequently size) of the glacier thickness changes and the changes of the glacier front position.
- The dynamics of the studied glaciers are similar to other glaciers on King George Island. Changes in the front positions of small glaciers are an excellent indicator of climate changes with little delay. This study also confirms that the use of methods based on surveying and remote sensing data achieves results highly consistent with those obtained by standard glaciological methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ATCM Management Plan for Antarctic Specially Protected Area No 128 Western Shore of Admiralty Bay, King George Island, South Shetland Islands. In ATCM XXXVII Final Report; Secretariat of the Antarctic Treaty: Buenos Aires, Argentina, 2014.
- Marsz, A.A. Zatoka Admiralicji i jej wybrzeża. In Sprawozdania Gdańskiego Towarzystwa Naukowego; Gdańsk Scientific Society: Gdańsk, Poland, 1979. [Google Scholar]
- Furmańczyk, K.; Marsz, A. South Shetland Islands, King George Island, Admiralty Bay, topographic Map 1:25,000 Scale; Institute of Geography, University of Gdańsk: Szczecin, Poland, 1980. [Google Scholar]
- Furmańczyk, K. Prace fotointerpretacyjne w Polskiej Stacji Antarktycznej im, H. Arctowskiego w sezonie badawczym 1978/79. In Teledetekcja w badaniach środowiska geograficznego. Prace Naukowe Uniwersytetu Śląskiego w Katowicach; Jankowski, A.T., Ed.; University of Silesia in Katowice: Katowice, Poland, 1983; pp. 179–188. [Google Scholar]
- Marsz, A.A. Zmiany położenia brzegów lodowych na wybranych odcinkach wybrzeży Zatoki Admiralicji (Wyspa Króla Jerzego, Szetlandy Południowe, Antarktyka Zachodnia). In Proceedings of the Fotointerpretacja w badaniach polarnych. Ogólnopolskie seminarium; Olszewski, A., Sinkiewicz, M., Eds.; 12 grudzień 1987—UMK: Toruń, Poland, 1987; pp. 123–130. [Google Scholar]
- Battke, Z. Admiralty Bay, King George Island, Topographic Map 1:50,000 Scale; Institute of Ecology, Polish Academy of Sciences, E. Romer State Cartographic Publishing House: Warsaw, Poland, 1990. [Google Scholar]
- Kejna, M.; Laska, K.; Caputa, Z. Recession of the Ecology glacier (King George Island) in the period 1961–1996. In Proceedings of the Polish Polar Studies, 25th International Polar Symposium, Warsaw, Poland, 16–17 September 1998; pp. 121–128. [Google Scholar]
- Birkenmajer, K. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bull. Polish Acad. Sci. Earth Sci. 2002, 50, 15–29. [Google Scholar]
- Pudełko, R. Topographic map of the SSSI No. 8, King George Island, West Antarctica. Polish Polar Res. 2003, 24, 53–60. [Google Scholar]
- Pudełko, R. Site of Special Scientific Interest No. 8, King George Island, Topographic Map 1:12,500 Scale; Department of Antarctic Biology, Polish Academy of Sciences: Warsaw, Poland, 2002. [Google Scholar]
- Pudełko, R. Western shore of Admiralty Bay, King George Island, South Shetlands, Orthophoto 1:10,000 Scale; Department of Antarctic Biology, Polish Academy of Sciences: Warsaw, Poland, 2007. [Google Scholar]
- Pudełko, R. Two new topographic maps for sites of scientific interest on King George Island, West Antarctica. Polish Polar Res. 2008, 29, 291–297. [Google Scholar]
- Braun, M.; Gossmann, H. Glacial Changes in the Areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. In Geoecology and Antarctic Ice-Free Coastal Landscapes; Beyer, L., Bölter, M., Eds.; Springer: Berlin, Germany, 2002; pp. 75–89. [Google Scholar]
- Rosa, K.K.; Vieira, R.; Simões, J.C. Dinâmica Glacial e Características Sedimentares Resultantes na Zona Proglacial da Geleira Ecology-Baía do Almirantado, Ilha Rei George Antártica. Rev. Bras. Geomorfol. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- Rosa, K.K.; Vieira, R.; Fernandez, G.; Mendes, C.W., Jr.; Velho, L.F.; Simões, J.C. Recent changes in the Wanda Glacier, King George Island, Antarctica. Pesqui. Em Geociências 2015, 42, 187–196. [Google Scholar] [CrossRef]
- Rückamp, M.; Braun, M.; Suckro, S.; Blindow, N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob. Planet. Chang. 2011, 79, 99–109. [Google Scholar] [CrossRef]
- Park, B.-K.; Chang, S.-K.; Yoon, H.I.; Chung, H. Recent retreat of ice cliffs, King George Island, South Shetland Islands, Antarctic Peninsula. Ann. Glaciol. 1998, 27, 633–635. [Google Scholar] [CrossRef] [Green Version]
- Simões, C.L.; Rosa, K.K.D.; Czapela, F.F.; Vieira, R.; Simões, J.C. Collins Glacier Retreat Process and Regional Climatic Variations, King George Island, Antarctica. Geogr. Rev. 2015, 105, 462–471. [Google Scholar] [CrossRef]
- Marsz, A.A.; Styszyńska, A. Główne Cechy klimatu Rejonu Polskiej Stacji Antarktycznej im Henryka Arctowskiego (Antarktyka Zachodnia, Szetlandy Południowe, Wyspa Króla Jerzego); Wydawnictwo Uczelniane WSM: Gdynia, Poland, 2000. [Google Scholar]
- Kejna, M.; Araźny, A.; Sobota, I. Climatic change on King George Island in the years 1948–2011. Polish Polar Res. 2013, 34, 213–235. [Google Scholar] [CrossRef]
- Sobota, I.; Kejna, M.; Araźny, A. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarct. Sci. 2015, 27, 500–510. [Google Scholar] [CrossRef]
- Battke, Z.; Marsz, A.A.; Pudełko, R. The Processes of Deglaciation in the Region of SSSI No.8 and thier Climatic and Hydrological Conditions. Probl. Klimatol. Polarn. 2001, 11, 121–135. [Google Scholar]
- Bintanja, R. The local surface energy balance of the Ecology Glacier, King George Island, Antarctica: Measurements and modelling. Antarct. Sci. 1995, 7, 315–325. [Google Scholar] [CrossRef]
- Fristad, K.S. Geodetic Mass Balance of Ecology Glacier, King George Island; University of Oslo: Oslo, Norwey, 2017. [Google Scholar]
- Pętlicki, M.; Sziło, J.; MacDonell, S.; Vivero, S.; Bialik, R. Recent Deceleration of the Ice Elevation Change of Ecology Glacier (King George Island, Antarctica). Remote Sens. 2017, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Sziło, J.; Bialik, R. Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Pudełko, R.; Angiel, P.; Potocki, M.; Jędrejek, A.; Kozak, M. Fluctuation of Glacial Retreat Rates in the Eastern Part of Warszawa Icefield, King George Island, Antarctica, 1979–2018. Remote Sens. 2018, 10, 892. [Google Scholar] [CrossRef] [Green Version]
- Marsz, A.A. Charakterystyka Fizyczno-Geograficzna Obszarów Lądowych w Otoczeniu Zatoki Admiralicji (Antarktyka Zachodnia, Szetlandy Południowe, Wyspa Króla Jerzego); Wyższa Szkoła Morska: Gdynia, Poland, 2000. [Google Scholar]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef]
- Oliva, M.; Navarro, F.; Hrbáček, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigo, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2017, 580, 210–223. [Google Scholar] [CrossRef]
- Salach, A. SAPC—Application for adapting scanned analogue photographs to use them in structure from motion technology. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Fieber, K.D.; Mills, J.P.; Miller, P.E.; Clarke, L.; Ireland, L.; Fox, A.J. Rigorous 3D change determination in Antarctic Peninsula glaciers from stereo WorldView-2 and archival aerial imagery. Remote Sens. Environ. 2018, 205, 18–31. [Google Scholar] [CrossRef]
- Postelniak, A. Geometric Potential of Pléiades 1A Satellite Imagery. Geosci. Eng. 2014, 60, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sofia, G.; Bailly, J.-S.; Chehata, N.; Tarolli, P.; Levavasseur, F. Comparison of Pleiades and LiDAR Digital Elevation Models for Terraces Detection in Farmlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Wheate, R. Reaction of glaciers to climate change—A remote sensing approach. In Geoinformatics for Climate Change Studies; Joshi, P.K., Singh, T.P., Eds.; TERI Press: New Dehli, India, 2011; pp. 69–108. [Google Scholar]
- Pasik, M.; Kowalska, M.E.; Łapiński, S.; Rajner, M.; Bakuła, K. Large-scale map and 3D modelling of the Henryk Arctowski Polish Antarctic Station. Polar Rec. 2017, 53, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, T.N.; Kulkarni, A.V.; Srinivasan, J. Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. Cryosphere 2012, 6, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.S.; Hedlund, C. Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A. J. Glaciol. 2001, 47, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.V.; Bahuguna, I.M.; Rathore, B.P.; Singh, S.K.; Randhawa, S.S.; Sood, R.K.; Dhar, S. Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Curr. Sci. 2007, 92, 69–74. [Google Scholar]
- Oerlemans, J. Response of valley glaciers to climate change. In Glacier Fluctuations and Climate Change; Oerlemans, J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 353–371. [Google Scholar]
- Roe, G.H.; Baker, M.B. Glacier response to climate perturbations: An accurate linear geometric model. J. Glaciol. 2014, 60, 670–684. [Google Scholar] [CrossRef] [Green Version]
Period | Air Temperature (°C) | Precipitation (mm) |
---|---|---|
1948–1950 | −3.6 | |
1951–1960 | −2.8 | |
1961–1970 | −2.7 | |
1971–1980 | −2.7 | 687.2 |
1981–1990 | −2.2 | 686.0 |
1991–2000 | −2.1 | 719.5 |
2001–2010 | −2.0 | 680.4 |
2011–2016 | −2.5 | 693.6 |
Mean | −2.5 | 697.9 |
Date of Survey or Photography | Type of Data and the Author | Type of Analysis |
---|---|---|
20 December 1956 | FIDASE aerial photographs (British Government Ministry of Overseas Development) | border of the glaciers, DEM |
9 February1979 | aerial photographs (Institute of Ecology at Polish Academy of Science) | border of the glaciers |
2001 | measurement registered by surveying and GPS RTK technique (Rafał Pudełko) | border of the glaciers |
2001 | topographic map of Site of Special Scientific Interest No. 8 (SSSI-8) at scale of 1:12,500 (Rafał Pudełko) | DEM |
2007 | measurement registered by surveying and GPS RTK technique (Rafał Pudełko), orthophotomap of the Western shoreof the Admiralty Bay at scale of 1:10,000 (Rafał Pudełko) | border of the glaciers |
2 February 2011 | satellite images taken by GeoEye-1 satellite system | border of the glaciers |
13 March 2013 | satellite images taken by Pleiades-1A satellite system | border of the glaciers, DEM |
21 January 2014 | satellite images taken by GeoEye-1 satellite system | border of the glaciers |
March 2015 | terrestrial laser scanning and measurement using GNSS RTK technique (Maria Kowalska, Sławomir Łapiński, Mariusz Pasik, Marcin Rajner) | border of the glaciers |
Name of Glacier. | Maximum Thickness Reduction in Frontal Zone [m] | Width of Thickness Reduction Zone [m] | Approximate Values of the Glacier Surface Slope (in 2013) | Thickness Reduction Gradientlong./vert. |
---|---|---|---|---|
Ecology Glacier | 30 | 1000–1100 | 0.12 | 0.029/0.24 |
Baranowski Glacier (np) | 600 | 0.10 | 0.050/0.50 | |
Baranowski Glacier (sp) | 800 | 0.11 | 0.038/0.35 | |
Sphinx Glacier | 300–600 | 0.16 | 0.067/0.42 |
Name of Glacier | Values of the Maximal Ice Thickness Reduction above Glacier Front in 2013 [m] | Approximate Values of the Glacier Surface Slope | Recession as the Slope and Ice Thickness Reduction Effect [m] | Observed Recession [m] |
---|---|---|---|---|
Ecology Glacier | 20–30 | 0.12 | 170–250 | 250–400 |
Baranowski Glacier (np) | 20–30 | 0.10 | 200–300 | 100–300 |
Baranowski Glacier (sp) | 10–30 | 0.11 | 90–270 | 100 |
Sphinx Glacier (np) | 10–30 | 0.20 | 50–150 | 50–100 |
Sphinx Glacier (sp) | 10–30 | 0.10 | 100–300 | 50–100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasik, M.; Bakuła, K.; Różycki, S.; Ostrowski, W.; Kowalska, M.E.; Fijałkowska, A.; Rajner, M.; Łapiński, S.; Sobota, I.; Kejna, M.; et al. Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades. Sensors 2021, 21, 1532. https://doi.org/10.3390/s21041532
Pasik M, Bakuła K, Różycki S, Ostrowski W, Kowalska ME, Fijałkowska A, Rajner M, Łapiński S, Sobota I, Kejna M, et al. Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades. Sensors. 2021; 21(4):1532. https://doi.org/10.3390/s21041532
Chicago/Turabian StylePasik, Mariusz, Krzysztof Bakuła, Sebastian Różycki, Wojciech Ostrowski, Maria Elżbieta Kowalska, Anna Fijałkowska, Marcin Rajner, Sławomir Łapiński, Ireneusz Sobota, Marek Kejna, and et al. 2021. "Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades" Sensors 21, no. 4: 1532. https://doi.org/10.3390/s21041532
APA StylePasik, M., Bakuła, K., Różycki, S., Ostrowski, W., Kowalska, M. E., Fijałkowska, A., Rajner, M., Łapiński, S., Sobota, I., Kejna, M., & Osińska-Skotak, K. (2021). Glacier Geometry Changes in the Western Shore of Admiralty Bay, King George Island over the Last Decades. Sensors, 21(4), 1532. https://doi.org/10.3390/s21041532