Implementation of Resonant Electric Based Metamaterials for Electromagnetic Wave Manipulation at Microwave Frequencies
Abstract
:1. Introduction
2. Methods and Results
2.1. Wireless Power Transfer Using Metasurfaces
2.2. Direction of Arrival Estimation Using Metasurfaces
2.3. Fundamental Building Block of Intelligent Reflecting Surfaces
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurduseven, O.; Smith, D.R. Dual-polarization printed holographic multibeam metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2738–2741. [Google Scholar] [CrossRef]
- Smith, D.R.; Yurduseven, O.; Mancera, L.P.; Bowen, P.; Kundtz, N.B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 2017, 8, 054048. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.V.; Fusco, V.; Fromenteze, T.; Yurduseven, O. Computational Polarimetric Imaging Using Two-Dimensional Dynamic Metasurface Apertures. IEEE Open J. Antennas Propag. 2021, 2, 488–497. [Google Scholar] [CrossRef]
- Yurduseven, O.; Assimonis, S.D.; Matthaiou, M. Intelligent reflecting surfaces with spatial modulation: An electromagnetic perspective. IEEE Open J. Commun. Soc. 2020, 1, 1256–1266. [Google Scholar] [CrossRef]
- Alici, K.B.; Turhan, A.B.; Soukoulis, C.M.; Ozbay, E. Optically thin composite resonant absorber at the near-infrared band: A polarization independent and spectrally broadband configuration. Opt. Express 2011, 19, 14260–14267. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Kim, T.; Lim, J.S.; Chang, I.; Cho, H.H. Metamaterial-selective emitter for maximizing infrared camouflage performance with energy dissipation. ACS Appl. Mater. Interfaces 2019, 11, 21250–21257. [Google Scholar] [CrossRef]
- Wu, C.; Neuner, B., III; John, J.; Milder, A.; Zollars, B.; Savoy, S.; Shvets, G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 2012, 14, 024005. [Google Scholar] [CrossRef]
- Dovelos, K.; Assimonis, S.D.; Ngo, H.Q.; Bellalta, B.; Matthaiou, M. Intelligent Reflecting Surfaces at Terahertz Bands: Channel Modeling and Analysis. arXiv 2021, arXiv:2103.15239. [Google Scholar]
- Dovelos, K.; Assimonis, S.D.; Ngo, H.Q.; Bellalta, B.; Matthaiou, M. Electromagnetic Modeling of Holographic Intelligent Reflecting Surfaces at Terahertz Bands. arXiv 2021, arXiv:2108.0810. [Google Scholar]
- Landy, N.; Sajuyigbe, S.; Mock, J.; Smith, D.; Padilla, W. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Assimonis, S.; Fusco, V. Polarization Insensitive, Wide-Angle, Ultra-wideband, Flexible, Resistively Loaded, Electromagnetic Metamaterial Absorber using Conventional Inkjet-Printing Technology. Nat. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, W.W. Absorbent Body for Electromagnetic Waves. U.S. Patent No. US2599944A, 10 June 1952. [Google Scholar]
- Marqués, R.; Martín, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Assimonis, S.D.; Kollatou, T.M.; Yioultsis, T.V.; Antonopoulos, C.S. Absorbing Surfaces Using EBG Structures. IEEE Trans. Magn. 2014, 50, 197–200. [Google Scholar] [CrossRef]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Dual Wide-Band Checkerboard Surfaces for Radar Cross Section Reduction. IEEE Trans. Antennas Propag. 2016, 64, 4133–4138. [Google Scholar] [CrossRef]
- Kazemzadeh, A.; Karlsson, A. Multilayered wideband absorbers for oblique angle of incidence. IEEE Trans. Antennas Propag. 2010, 58, 3637–3646. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yang, Y.; Liang, C. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 2011, 110, 063702. [Google Scholar] [CrossRef]
- Assimonis, S.; Kollatou, T.; Tsiamitros, D.; Stimoniaris, D.; Samaras, T.; Sahalos, J. High efficiency and triple-band metamaterial electromagnetic energy hervester. In Proceedings of the 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 26–28 November 2015; pp. 320–323. [Google Scholar]
- Unal, E.; Dincer, F.; Tetik, E.; Karaaslan, M.; Bakir, M.; Sabah, C. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9735–9740. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Dincer, F.; Delihacioglu, K.; Sabah, C. Tunable perfect metamaterial absorber and sensor applications. J. Mater. Sci. Mater. Electron. 2016, 27, 12091–12099. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.L.; Hou, X.W.; Tian, Y.; Hou, D.Y. Perfect metamaterial absorber with dual bands. Prog. Electromagn. Res. 2010, 108, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Kollatou, T.M.; Dimitriadis, A.I.; Assimonis, S.D.; Kantartzis, N.V.; Antonopoulos, C.S. Multi-band, highly absorbing, microwave metamaterial structures. Appl. Phys. A 2014, 115, 555–561. [Google Scholar] [CrossRef]
- Bodehou, M.; Martini, E.; Maci, S.; Huynen, I.; Craeye, C. Multibeam and beam scanning with modulated metasurfaces. IEEE Trans. Antennas Propag. 2019, 68, 1273–1281. [Google Scholar] [CrossRef]
- Bodehou, M.; Craeye, C.; Martini, E.; Huynen, I. A quasi-direct method for the surface impedance design of modulated metasurface antennas. IEEE Trans. Antennas Propag. 2018, 67, 24–36. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Smith, D.R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 2006, 88, 041109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Electron. 2019, 66, 1044–1058. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, Y.; Zhang, R. UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization. IEEE Trans. Wirel. Commun. 2018, 17, 5092–5106. [Google Scholar] [CrossRef] [Green Version]
- Aldhaher, S.; Mitcheson, P.D.; Arteaga, J.M.; Kkelis, G.; Yates, D.C. Light-weight wireless power transfer for mid-air charging of drones. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 336–340. [Google Scholar] [CrossRef]
- Almoneef, T.S.; Ramahi, O.M. Metamaterial electromagnetic energy harvester with near unity efficiency. Appl. Phys. Lett. 2015, 106, 153902. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Li, L. Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces. Appl. Sci. 2018, 8, 497. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Yang, X.; Zhong, H.; Chu, C.; Gao, S. Polarization-insensitive wide-angle-reception metasurface with simplified structure for harvesting electromagnetic energy. Appl. Phys. Lett. 2018, 113, 123903. [Google Scholar] [CrossRef] [Green Version]
- Chandravanshi, S.; Zelenchuk, D.; Buchanan, N. A Rectenna Design Based on Circularly Polarized Differential Antenna and Class-F Rectifier. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Packard, H. Linear Models for Diode Surface Mount Packages. 1997. Available online: http://www.hp.woodshot.com/hprfhelp/4_downld/lit/diodelit/an1124.pdf (accessed on 9 December 2021).
- Infineon Technologies. BAT-68 Silicon RF Schottky Barrier Diodes Data Sheet. Available online: https://www.digchip.com/datasheets/parts/datasheet/765/BAT68.php (accessed on 9 December 2021).
- Guo, J.; Zhang, H.; Zhu, X. Theoretical Analysis of RF-DC Conversion Efficiency for Class-F Rectifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 977–985. [Google Scholar] [CrossRef]
- Yurduseven, O.; Gowda, V.R.; Gollub, J.N.; Smith, D.R. Printed aperiodic cavity for computational and microwave imaging. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 367–369. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, S.; Huang, H.; Chen, X.; Chen, J.; Zhang, A. Frequency-diverse metasurface antenna with hybrid bunching methods for coincidence imaging. IEEE Access 2020, 8, 137711–137719. [Google Scholar] [CrossRef]
- Yurduseven, O.; Abbasi, M.A.B.; Fromenteze, T.; Fusco, V. Frequency-diverse computational direction of arrival estimation technique. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.A.B.; Fusco, V.; Yurduseven, O.; Fromenteze, T. Frequency-diverse multimode millimetre-wave constant-ϵr lens-loaded cavity. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Hoang, T.V.; Fromenteze, T.; Abbasi, M.A.B.; Decroze, C.; Khalily, M.; Fusco, V.; Yurduseven, O. Spatial diversity improvement in frequency-diverse computational imaging with a multi-port antenna. Results Phys. 2021, 22, 103906. [Google Scholar] [CrossRef]
- Yurduseven, O.; Imani, M.F.; Odabasi, H.; Gollub, J.; Lipworth, G.; Rose, A.; Smith, D.R. Resolution of the frequency diverse metamaterial aperture imager. Prog. Electromagn. Res. 2015, 150, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.K.; Yurduseven, O.; Ngo, H.Q.; Matthaiou, M. On the aperture efficiency of intelligent reflecting surfaces. IEEE Wirel. Commun. Lett. 2020, 10, 599–603. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wirel. Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Assimonis, S.D.; Daskalakis, S.N.; Bletsas, A. Efficient RF harvesting for low-power input with low-cost lossy substrate rectenna grid. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 8–9 September 2014; pp. 1–6. [Google Scholar]
- Assimonis, S.D.; Daskalakis, S.N.; Bletsas, A. Sensitive and Efficient RF Harvesting Supply for Batteryless Backscatter Sensor Networks. IEEE Trans. Microw. Theory Tech. 2016, 64, 1327–1338. [Google Scholar] [CrossRef] [Green Version]
- Assimonis, S.D.; Fusco, V.; Georgiadis, A.; Samaras, T. Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting. Sci. Rep. 2018, 8, 15038. [Google Scholar] [CrossRef] [Green Version]
- Assimonis, S.D.; Fusco, V. RF Energy Harvesting with Dense Rectenna-Arrays Using Electrically Small Rectennas Suitable for IoT 5G Embedded Sensor Nodes. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018; pp. 1–3. [Google Scholar]
- Sleasman, T.; Imani, M.F.; Gollub, J.N.; Smith, D.R. Dynamic metamaterial aperture for microwave imaging. Appl. Phys. Lett. 2015, 107, 204104. [Google Scholar] [CrossRef]
- Hunt, J.; Driscoll, T.; Mrozack, A.; Lipworth, G.; Reynolds, M.; Brady, D.; Smith, D.R. Metamaterial apertures for computational imaging. Science 2013, 339, 310–313. [Google Scholar] [CrossRef]
- Fromenteze, T.; Yurduseven, O.; Imani, M.F.; Gollub, J.; Decroze, C.; Carsenat, D.; Smith, D.R. Computational imaging using a mode-mixing cavity at microwave frequencies. Appl. Phys. Lett. 2015, 106, 194104. [Google Scholar] [CrossRef] [Green Version]
Parameter | a | c | d | e | g | s | w | |
---|---|---|---|---|---|---|---|---|
Value | 16.31 | 7 | 3 | 5.6 | 0.5 | 0.5 | 2 | 5.5 |
Parameter | ||||
---|---|---|---|---|
Value | 1.49 Ω | 9 nA | 0.786 pF | 16 V |
Original DoA | Estimated DoA | |
---|---|---|
Source 1 | ||
Source 2 | ||
Source 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assimonis, S.D.; Chandravanshi, S.; Yurduseven, O.; Zelenchuk, D.; Malyuskin, O.; Abbasi, M.A.B.; Fusco, V.; Cotton, S.L. Implementation of Resonant Electric Based Metamaterials for Electromagnetic Wave Manipulation at Microwave Frequencies. Sensors 2021, 21, 8452. https://doi.org/10.3390/s21248452
Assimonis SD, Chandravanshi S, Yurduseven O, Zelenchuk D, Malyuskin O, Abbasi MAB, Fusco V, Cotton SL. Implementation of Resonant Electric Based Metamaterials for Electromagnetic Wave Manipulation at Microwave Frequencies. Sensors. 2021; 21(24):8452. https://doi.org/10.3390/s21248452
Chicago/Turabian StyleAssimonis, Stylianos D., Sandhya Chandravanshi, Okan Yurduseven, Dmitry Zelenchuk, Oleksandr Malyuskin, Muhammad Ali Babar Abbasi, Vincent Fusco, and Simon L. Cotton. 2021. "Implementation of Resonant Electric Based Metamaterials for Electromagnetic Wave Manipulation at Microwave Frequencies" Sensors 21, no. 24: 8452. https://doi.org/10.3390/s21248452
APA StyleAssimonis, S. D., Chandravanshi, S., Yurduseven, O., Zelenchuk, D., Malyuskin, O., Abbasi, M. A. B., Fusco, V., & Cotton, S. L. (2021). Implementation of Resonant Electric Based Metamaterials for Electromagnetic Wave Manipulation at Microwave Frequencies. Sensors, 21(24), 8452. https://doi.org/10.3390/s21248452