Saliency Detection with Moving Camera via Background Model Completion
Abstract
:1. Introduction
- Inspired by the filling of missing pixels via the inpainting technique, we adopt a video completion module for modeling the background scene. In order to generate a clean background frame, foreground objects will be substituted by the estimated background colors. Guided by the optical flow, the video completion module can generate good background model for video captured by moving camera, which is not possible for other existing methods.
- We adopt the BSUV-Net 2.0 [13] for background/foreground segmentation. Although the model is pre-trained with the CDNet [14] video dataset, it can also segment the foreground in unseen videos. However, most of the videos in CDNet are captured by static camera. Although BSUV-Net 2.0 is enhanced with more training videos of moving camera, we find that the model still produces many FP and FN errors. Therefore, we replace the background frame generation method of BSUV-Net 2.0 with our video completion-based background modeler.
- We propose a framework that comprises video completion-based background modeler and the enhanced BSUV-Net 2.0 foreground segmentation network. To thoroughly evaluate the new framework, we create our own video dataset with videos captured by PTZ camera and free-moving camera. The results show that our framework outperforms many high-ranking background subtraction models.
2. Related Work
3. Saliency Detection Framework
3.1. Evaluation Metrics
3.2. Background Modeler
3.3. Foreground Segmentation
4. Result and Discussion
4.1. Datasets
4.2. Performance Evaluation
4.3. Quantitative and Visual Results
4.4. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsieh, J.-W.; Hsu, Y.-T.; Liao, H.-Y.M.; Chen, C.-C. Video-based human movement analysis and its application to surveillance systems. IEEE Trans. Multimed. 2008, 10, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Akilan, T.; Wu, Q.J.; Safaei, A.; Huo, J.; Yang, Y. A 3D CNN-LSTM-based image-to-image foreground segmentation. IEEE Trans. Intell. Transp. Syst. 2020, 21, 959–971. [Google Scholar] [CrossRef]
- Stauffer, C.; Grimson, W.E.L. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Szolgay, D.; Benois-Pineau, J.; Megret, R.; Gaestel, Y.; Dartigues, J.-F. Detection of moving foreground objects in videos with strong camera motion. Pattern Anal. Appl. 2011, 14, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Elgammal, A.; Duraiswami, R.; Harwood, D.; Davis, L.S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 2002, 90, 1151–1163. [Google Scholar] [CrossRef] [Green Version]
- Elhabian, S.Y.; El-Sayed, K.M.; Ahmed, S.H. Moving object detection in spatial domain using background removal techniques—State-of-art. Recent Pat. Comput. Sci. 2008, 1, 32–54. [Google Scholar] [CrossRef]
- Bouwmans, T. Recent advanced statistical background modeling for foreground detection—A systematic survey. Recent Pat. Comput. Sci. 2011, 4, 147–176. [Google Scholar]
- Sobral, A.; Vacavant, A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 2014, 122, 4–21. [Google Scholar] [CrossRef]
- Maddalena, L.; Petrosino, A. A self organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 2008, 17, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Z.; Jodoin, P.-M. Interactive deep learning method for segmenting moving objects. Pattern Recognit. Lett. 2017, 96, 66–75. [Google Scholar] [CrossRef]
- Lim, L.A.; Keles, H.Y. Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. arXiv 2018, arXiv:1801.02225. [Google Scholar]
- Lim, L.A.; Keles, H.Y. Foreground segmentation using convolution neural networks for multiscale feature encoding. Pattern Recognit. Lett. 2018, 112, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Tezcan, M.O.; Ishwar, P.; Konrad, J. BSUV-Net 2.0: Spatio-temporal data augmentations for video-agnostic supervised background subtraction. IEEE Access 2021, 9, 53849–53860. [Google Scholar] [CrossRef]
- Goyette, N.; Jodoin, P.-M.; Porikli, F.; Konrad, J.; Ishwar, P. A novel video dataset for change detection benchmarking. IEEE Trans. Image Process. 2014, 23, 4663–4679. [Google Scholar] [CrossRef]
- Hishinuma, Y.; Suzuki, T.; Nakagami, K.; Nishitani, T. Transformed domain GMM foreground segmentation for mobile video camera. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 2217–2220. [Google Scholar]
- Amri, S.; Barhoumi, W.; Zagrouba, E. A robust framework for joint background/foreground segmentation of complex video scenes filmed with freely moving camera. Multimed. Tools Appl. 2010, 46, 175–205. [Google Scholar] [CrossRef]
- Tao, Y.; Ling, Z. Deep features homography transformation fusion network—A universal foreground segmentation algorithm for PTZ cameras and a comparative study. Sensors 2020, 20, 3420. [Google Scholar] [CrossRef] [PubMed]
- Komagal, E.; Yogameena, B. Foreground segmentation with PTZ camera: A survey. Multimed. Tools Appl. 2018, 77, 22489–22542. [Google Scholar] [CrossRef]
- Yun, K.; Lim, J.; Choi, J.Y. Scene conditional background update for moving object detection in a moving camera. Pattern Recognit. Lett. 2017, 88, 57–63. [Google Scholar] [CrossRef]
- Sajid, H.; Cheung, S.-C.S.; Jacobs, N. Motion and appearance based background subtraction for freely moving cameras. Signal Process. Image Commun. 2019, 75, 11–21. [Google Scholar] [CrossRef]
- Zhu, Y.; Elgammal, A. A multilayer-based framework for online background subtraction with freely moving cameras. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5132–5141. [Google Scholar]
- Chapel, M.-N.; Bouwmans, T. Moving objects detection with a moving camera: A comprehensive review. Comput. Sci. Rev. 2020, 38, 100310. [Google Scholar] [CrossRef]
- Tron, R.; Vidal, R. A benchmark for the comparison of 3d motion segmentation algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Van Gool, L.; Gross, M.; Sorkine-Hornung, A. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 724–732. [Google Scholar]
- Li, F.; Kim, T.; Humayun, A.; Tsai, D.; Rehg, J.M. Video segmentation by tracking many figure-ground segments. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2192–2199. [Google Scholar]
- Cuevas, C.; Yanez, E.M.; Garcia, N. Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA. Comput. Vis. Image Underst. 2016, 152, 103–117. [Google Scholar] [CrossRef]
- Gao, C.; Saraf, A.; Huang, J.-B.; Kopf, J. Flow-edge guided video completion. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Farnoosh, A.; Rezaei, B.; Ostadabbas, S. DEEPPBM: Deep probabilistic background model estimation from video sequences. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 13–18 September 2020. [Google Scholar]
- Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2462–2470. [Google Scholar]
- Berger, M.; Tagliassacchi, A.; Seversky, L.; Alliez, P.; Guennebaud, G.; Levine, J.; Sharf, A.; Silva, C. A survey of surface reconstruction from point clouds. Proc. Comput. Graph. Forum 2016, 36, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Tezcan, M.O.; Ishwar, P.; Konrad, J. BSUV-Net: A fully-convolutional neural network for background subtraction of unseen videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2763–2772. [Google Scholar]
- Ochs, P.; Malik, J.; Brox, T. Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1187–1200. [Google Scholar] [CrossRef] [Green Version]
- St-Charles, P.-L.; Bilodeau, G.-A.; Bergevin, R. A self-adjusting approach to change detection based on background word consensus. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015; pp. 990–997. [Google Scholar]
- St-Charles, P.-L.; Bilodeau, G.-A.; Bergevin, R. SuBSENSE: A universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 2015, 24, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A powerful random technique to estimate the background in video sequences. In Proceedings of the International Conference Acoustics, Speech and Signal Processing, Washington, DC, USA, 19–24 April 2009; pp. 945–948. [Google Scholar]
Length of Initialization Sequence | F-Measure |
---|---|
30 frames | 0.8062 |
100 frames | 0.8147 |
Network Structure of BSUV | Kernel Size | In_Channels | Out_Channels |
---|---|---|---|
Conv + BN | 3 * 3 | 12 | 64 |
Conv + BN | 3 * 3 | 64 | 64 |
SD + Maxpooling | 2 * 2 | 64 | 64 |
Conv + BN | 3 * 3 | 64 | 128 |
Conv + BN | 3 * 3 | 128 | 128 |
SD + Maxpooling | 2 * 2 | 128 | 128 |
Conv + BN | 3 * 3 | 128 | 256 |
Conv + BN | 3 * 3 | 256 | 256 |
Conv + BN | 3 * 3 | 256 | 256 |
SD + Maxpooling | 2 * 2 | 256 | 256 |
Conv + BN | 3 * 3 | 256 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
SD + Maxpooling | 2 * 2 | 512 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
Up-Conv + BN | 3 * 3 | 512 | 512 |
Conv + BN | 3 * 3 | 512 + 512 | 512 |
Conv + BN | 3 * 3 | 512 | 512 |
Up-Conv + BN | 3 * 3 | 512 | 512 |
Conv + BN | 3 * 3 | 512 + 256 | 256 |
Conv + BN | 3 * 3 | 256 | 256 |
Up-Conv + BN | 3 * 3 | 256 | 256 |
Conv + BN | 3 * 3 | 256 + 128 | 128 |
Conv + BN | 3 * 3 | 128 | 128 |
Up-Conv + BN | 3 * 3 | 128 | 128 |
Conv + BN | 3 * 3 | 128 + 64 | 64 |
Conv + BN | 3 * 3 | 64 | 64 |
Conv + BN | 3 * 3 | 64 | 1 |
Sigmoid | 1 | 1 |
Category | Video Scenes | |||||
---|---|---|---|---|---|---|
Bad Weather | Blizzard (7000 Frames) | Skating (3900 Frames) | SnowFall (6500 Frames) | WetSnow (3500 Frames) | ||
Low Framerate | port 0 17fps (3000 frames) | tramCrossroad 1fps (900 frames) | tunnelExit 0 35fps (4000 frames) | turnpike 0 5fps (1500 frames) | ||
Night Videos | bridgeEntry (2500 frames) | busyBoulvard (2760 frames) | fluidHighway (1364 frames) | streetCornerAtNight (5200 frames) | tramStation (3000 frames) | winterStreet (1785 frames) |
PTZ | continuousPan (1700 frames) | intermittentPan (3500 frames) | twoPositionPTZCam (2300 frames) | zoonInZoomOut (1130 frames) | ||
Thermal | corridor (5400 frames) | library (4900 frames) | park (600 frames) | diningRoom (3700 frames) | lakeSide (6500 frames) | |
Shadow | backdoor (2000 frames) | bungalows (1700 frames) | busStation (1250 frames) | cubicle (7400 frames) | peopleInShade (1199 frames) | copyMachine (3400 frames) |
Intermittent Object Motion | abandonedBox (4500 frames) | parking (2500 frames) | streetLight (3200 frames) | sofa (2750 frames) | tramstop (3200 frames) | winterDriveway (2500 frames) |
Camera Jitter | badminton (1150 frames) | boulevard (2500 frames) | sidewalk (1200 frames) | traffic (1570 frames) | ||
Dynamic Background | boats (7999 frames) | canoe (1189 frames) | fountain01 (1184 frames) | fountain02 (1499 frames) | overpass (3000 frames) | fall (4000 frames) |
Baseline | highway (1700 frames) | office (2050 frames) | pedestrians (1099 frames) | PETS2006 (1200 frames) | ||
Turbulence | turbulence0 (5000 frames) | turbulence1 (4000 frames) | turbulence2 (4500 frames) | turbulence3 (2200 frames) |
Category | Video | Number of Frames | Ground Truth Frames |
---|---|---|---|
animals | cats06 | 331 | (190, 209) |
cats07 | 193 | (110, 129) | |
dogs02 | 420 | (160, 179) | |
horses01 | 500 | (280, 299) | |
horses02 | 240 | (140, 159) | |
horses03 | 240 | (214, 233) | |
horses04 | 800 | (540, 559) | |
horses05 | 456 | (320, 339) | |
horses06 | 720 | (380, 399) | |
rabbits01 | 290 | (200, 219) | |
people | I_MC_01 | 300 | (1, 300) |
I_SM_01 | 300 | (1, 300) | |
I_SM_02 | 300 | (1, 300) | |
I_SM_03 | 300 | (1, 300) | |
marple1 | 328 | (309, 328) | |
marple2 | 250 | (220, 239) | |
marple3 | 323 | (250, 269) | |
marple6 | 800 | (180, 199) | |
marple7 | 528 | (370, 389) | |
marple10 | 460 | (440, 459) | |
marple11 | 173 | (150, 169) | |
O_MC_01 | 425 | (1, 425) | |
O_SM_01 | 425 | (1, 425) | |
O_SM_02 | 425 | (1, 425) | |
O_SM_03 | 425 | (1, 425) | |
people03 | 180 | (160, 179) | |
people04 | 320 | (270, 289) | |
people05 | 260 | (140, 159) | |
things | farm01 | 252 | (194, 213) |
tennis | 466 | (281, 300) |
Category\Metric | Recall | Specificity | FPR | FNR | PWC | F-Measure | Precision |
---|---|---|---|---|---|---|---|
PTZ | 0.8798 | 0.9970 | 0.0030 | 0.1202 | 0.3788 | 0.8147 | 0.7880 |
badWeather | 0.7139 | 0.9997 | 0.0003 | 0.2861 | 0.4538 | 0.8155 | 0.9790 |
baseline | 0.9325 | 0.9987 | 0.0013 | 0.0675 | 0.2642 | 0.9514 | 0.9736 |
cameraJitter | 0.8310 | 0.9973 | 0.0027 | 0.1690 | 0.9369 | 0.8790 | 0.9382 |
dynamic background | 0.7437 | 0.9998 | 0.0002 | 0.2563 | 0.1229 | 0.8013 | 0.9336 |
intermittentObjectMotion | 0.7987 | 0.9980 | 0.0020 | 0.2013 | 1.3093 | 0.8758 | 0.9809 |
lowFramerate | 0.5614 | 0.9994 | 0.0006 | 0.4386 | 0.6950 | 0.6292 | 0.9046 |
nightVideos | 0.4856 | 0.9992 | 0.0008 | 0.5144 | 1.1114 | 0.5727 | 0.9328 |
shadow | 0.9389 | 0.9984 | 0.0016 | 0.0611 | 0.4378 | 0.9543 | 0.9704 |
thermal | 0.6156 | 0.9990 | 0.0010 | 0.3844 | 1.2019 | 0.7075 | 0.9531 |
turbulence | 0.5732 | 0.9998 | 0.0002 | 0.4268 | 0.2583 | 0.7107 | 0.9654 |
Average value | 0.7340 | 0.9988 | 0.0012 | 0.2660 | 0.6518 | 0.7920 | 0.9381 |
Method | Recall | Specificity | FPR | FNR | PWC | F-Measure | Precision |
---|---|---|---|---|---|---|---|
BSUV-Net | 0.8203 | 0.9946 | 0.0054 | 0.1797 | 1.1402 | 0.7868 | 0.8113 |
BSUV-Net 2.0 | 0.8136 | 0.9979 | 0.0021 | 0.1864 | 0.7614 | 0.8387 | 0.9011 |
Fast BSUV-Net 2.0 | 0.8181 | 0.9956 | 0.0044 | 0.1819 | 0.9054 | 0.8039 | 0.8425 |
SD-BMC | 0.7340 | 0.9988 | 0.0012 | 0.2660 | 0.6518 | 0.7920 | 0.9381 |
Method | Recall | Specificity | FPR | FNR | PWC | F-Measure | Precision |
---|---|---|---|---|---|---|---|
BSUV-Net | 0.8045 | 0.9909 | 0.0091 | 0.1955 | 1.0716 | 0.6282 | 0.5897 |
BSUV-Net 2.0 | 0.7932 | 0.9957 | 0.0043 | 0.2068 | 0.5892 | 0.7037 | 0.6829 |
Fast BSUV-Net 2.0 | 0.8056 | 0.9878 | 0.0122 | 0.1944 | 1.3516 | 0.5014 | 0.4236 |
SD-BMC | 0.8798 | 0.9970 | 0.0030 | 0.1202 | 0.3788 | 0.8147 | 0.7880 |
Method | Recall | Specificity | FPR | FNR | PWC | F-Measure | Precision |
---|---|---|---|---|---|---|---|
BSUV-Net | 0.4823 | 0.8556 | 0.1444 | 0.5177 | 18.4314 | 0.3707 | 0.4547 |
BSUV-Net 2.0 | 0.5273 | 0.9934 | 0.0066 | 0.4727 | 7.3303 | 0.6123 | 0.8827 |
PAWCS | 0.4730 | 0.8695 | 0.1305 | 0.5270 | 19.0191 | 0.3323 | 0.3055 |
SuBSENSE | 0.3066 | 0.9460 | 0.0540 | 0.6934 | 13.9365 | 0.2936 | 0.4167 |
ViBe | 0.1332 | 0.7947 | 0.2053 | 0.6680 | 25.4062 | 0.2001 | 0.1707 |
SD-BMC | 0.5635 | 0.9906 | 0.0094 | 0.4365 | 7.1580 | 0.6446 | 0.8719 |
F-Measure Comparison on Individual Video | Video | SD-BMC | BSUV-Net 2.0 | BSUV-Net | PAWCS | SuBSENSE | ViBe |
---|---|---|---|---|---|---|---|
animals | cats06 | 0.4417 | 0.0041 | 0.0005 | 0.0062 | ||
cats07 | 0.5700 | 0.6634 | 0.5549 | 0.7506 | 0.4268 | 0.4408 | |
dogs02 | 0.7758 | 0.6531 | 0.1754 | 0.4514 | 0.6144 | 0.0981 | |
horses01 | 0.7163 | 0.7075 | 0.5733 | 0.5131 | 0.7398 | 0.2828 | |
horses02 | 0.3591 | 0.4368 | 0.3474 | 0.1090 | 0.0264 | 0.0485 | |
horses03 | 0.8341 | 0.8130 | 0.1235 | 0.1844 | 0.2957 | 0.0454 | |
horses04 | 0.2322 | 0.2198 | 0.4269 | 0.0018 | 0.2025 | 0.0449 | |
horses05 | 0.1433 | 0.1493 | 0.6209 | 0.4218 | 0.1793 | 0.6971 | |
horses06 | 0.4626 | 0.4583 | 0.1986 | 0.2434 | 0.4240 | 0.0353 | |
rabbits01 | 0.1972 | 0.1607 | 0.1805 | 0.2484 | 0.1214 | 0.0239 | |
Average | 0.4732 | 0.4266 | 0.3557 | 0.3249 | 0.3031 | 0.1723 | |
people | I_MC_01 | 0.8343 | 0.8495 | 0.6551 | 0.3541 | 0.4782 | 0.1049 |
I_SM_01 | 0.7957 | 0.8631 | 0.2943 | 0.4522 | 0.6024 | 0.2066 | |
I_SM_02 | 0.7577 | 0.8310 | 0.3354 | 0.4601 | 0.5193 | 0.2312 | |
I_SM_03 | 0.7283 | 0.8248 | 0.3593 | 0.4367 | 0.4462 | 0.2334 | |
marple1 | 0.6106 | 0.6042 | 0.3784 | 0.2276 | 0.3022 | 0.0946 | |
marple2 | 0.8292 | 0.9490 | 0.0586 | 0.0312 | 0.0085 | 0.4303 | |
marple3 | 0.9186 | 0.4303 | 0.0013 | 0.0661 | 0.0050 | 0.2659 | |
marple6 | 0.4521 | 0.3793 | 0.2967 | 0.3744 | 0.4677 | 0.3463 | |
marple7 | 0.9308 | 0.8645 | 0.5030 | 0.0032 | 0.0452 | 0.0895 | |
marple10 | 0.6870 | 0.8286 | 0.0016 | 0.0429 | 0.0443 | 0.0540 | |
marple11 | 0.4359 | 0.7044 | 0.4371 | 0.1585 | 0.0344 | 0.3260 | |
O_MC_01 | 0.7097 | 0.6292 | 0.2610 | 0.3230 | 0.2195 | 0.1570 | |
O_SM_01 | 0.8686 | 0.8704 | 0.3575 | 0.3559 | 0.2926 | 0.1446 | |
O_SM_02 | 0.8113 | 0.8298 | 0.1920 | 0.3108 | 0.3205 | 0.1067 | |
O_SM_03 | 0.7955 | 0.8115 | 0.1516 | 0.2569 | 0.2894 | 0.0909 | |
people03 | 0.5481 | 0.4985 | 0.2137 | 0.4588 | 0.0144 | 0.2158 | |
people04 | 0.8333 | 0.8457 | 0.3818 | 0.1923 | 0.2498 | 0.0628 | |
people05 | 0.8786 | 0.8662 | 0.6771 | 0.7264 | 0.6623 | 0.3420 | |
Average | 0.7459 | 0.7489 | 0.3086 | 0.2906 | 0.2779 | 0.1946 | |
things | farm01 | 0.5936 | 0.4329 | 0.1859 | 0.3668 | 0.1654 | 0.2630 |
tennis | 0.8360 | 0.8902 | 0.6442 | 0.2836 | 0.4341 | 0.2035 | |
Average | 0.7148 | 0.6616 | 0.4151 | 0.3252 | 0.2998 | 0.2333 | |
Total Average | 0.6446 | 0.6123 | 0.3707 | 0.3323 | 0.2936 | 0.2001 |
MCC Comparison on Individual Video | Video | SD-BMC | BSUV-Net 2.0 | BSUV-Net | PAWCS | SuBSENSE | ViBe |
---|---|---|---|---|---|---|---|
animals | cats06 | 0.4527 | −0.0054 | −0.0120 | −0.0264 | −0.0134 | −0.0242 |
cats07 | 0.6181 | 0.6922 | 0.6064 | 0.7597 | 0.4867 | 0.4224 | |
dogs02 | 0.7837 | 0.6833 | 0.1643 | 0.4546 | 0.6059 | 0.0826 | |
horses01 | 0.7145 | 0.7071 | 0.5188 | 0.4147 | 0.7110 | 0.0906 | |
horses02 | 0.4261 | 0.5021 | 0.3021 | 0.0505 | 0.0068 | −0.0978 | |
horses03 | 0.8260 | 0.8008 | −0.2155 | 0.1212 | 0.3344 | −0.0733 | |
horses04 | 0.3097 | 0.3064 | 0.2132 | 0.0203 | 0.2379 | −0.1266 | |
horses05 | 0.1890 | 0.1931 | −0.0718 | 0.3369 | 0.1708 | 0.5011 | |
horses06 | 0.5152 | 0.5165 | 0.1678 | 0.2073 | 0.3970 | 0.0060 | |
rabbits01 | 0.1594 | 0.1207 | 0.2417 | 0.2900 | 0.0959 | −0.0811 | |
Average | 0.4994 | 0.4517 | 0.1915 | 0.2629 | 0.3033 | 0.0700 | |
people | I_MC_01 | 0.8370 | 0.8552 | 0.6597 | 0.3794 | 0.4837 | 0.1186 |
I_SM_01 | 0.7801 | 0.8531 | 0.2879 | 0.4453 | 0.5758 | 0.1416 | |
I_SM_02 | 0.7304 | 0.8125 | 0.2932 | 0.4315 | 0.4602 | 0.1142 | |
I_SM_03 | 0.7011 | 0.8059 | 0.3226 | 0.3982 | 0.3771 | 0.1186 | |
marple1 | 0.5877 | 0.5836 | 0.3740 | 0.0990 | 0.1064 | −0.1778 | |
marple2 | 0.7430 | 0.9223 | −0.0360 | −0.1704 | −0.1508 | 0.0133 | |
marple3 | 0.9090 | 0.4920 | 0.0238 | −0.0335 | 0.0461 | 0.1245 | |
marple6 | 0.4511 | 0.4032 | 0.2078 | 0.1964 | 0.3597 | 0.0991 | |
marple7 | 0.9137 | 0.8422 | 0.4403 | −0.1902 | 0.0302 | −0.1260 | |
marple10 | 0.7114 | 0.8333 | −0.0218 | −0.0092 | −0.0295 | −0.0048 | |
marple11 | 0.3744 | 0.6867 | 0.4030 | 0.0470 | −0.0467 | 0.2817 | |
O_MC_01 | 0.7071 | 0.6326 | 0.3258 | 0.3975 | 0.3112 | 0.2158 | |
O_SM_01 | 0.8722 | 0.8737 | 0.3973 | 0.4027 | 0.3162 | 0.1670 | |
O_SM_02 | 0.8200 | 0.8365 | 0.2352 | 0.3511 | 0.3420 | 0.1137 | |
O_SM_03 | 0.8056 | 0.8194 | 0.1759 | 0.3017 | 0.3113 | 0.0834 | |
people03 | 0.5799 | 0.5420 | 0.3204 | 0.4959 | 0.0778 | 0.0328 | |
people04 | 0.8409 | 0.8504 | 0.4327 | 0.2422 | 0.2449 | 0.0123 | |
people05 | 0.8648 | 0.8514 | 0.6700 | 0.7042 | 0.6516 | 0.2668 | |
Average | 0.7350 | 0.7498 | 0.3062 | 0.2494 | 0.2482 | 0.0886 | |
things | farm01 | 0.6131 | 0.4933 | 0.2097 | 0.2273 | 0.0250 | 0.0860 |
tennis | 0.8279 | 0.8838 | 0.6233 | 0.2481 | 0.3992 | 0.1327 | |
Average | 0.7205 | 0.6886 | 0.4165 | 0.2377 | 0.2121 | 0.1094 | |
Total Average | 0.6516 | 0.6300 | 0.3047 | 0.2500 | 0.2545 | 0.0893 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-P.; Chan, K.-L. Saliency Detection with Moving Camera via Background Model Completion. Sensors 2021, 21, 8374. https://doi.org/10.3390/s21248374
Zhang Y-P, Chan K-L. Saliency Detection with Moving Camera via Background Model Completion. Sensors. 2021; 21(24):8374. https://doi.org/10.3390/s21248374
Chicago/Turabian StyleZhang, Yu-Pei, and Kwok-Leung Chan. 2021. "Saliency Detection with Moving Camera via Background Model Completion" Sensors 21, no. 24: 8374. https://doi.org/10.3390/s21248374
APA StyleZhang, Y.-P., & Chan, K.-L. (2021). Saliency Detection with Moving Camera via Background Model Completion. Sensors, 21(24), 8374. https://doi.org/10.3390/s21248374