# Characterization of Supersonic Compressible Fluid Flow Using High-Speed Interferometry

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Method

#### 2.1. Interferometry and Fluid Flow

#### 2.2. Spatial Carrier Interferometry

## 3. Materials and Methods

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Psota, P.; Dančová, P.; Cubreli, G.; Lédl, V.; Vít, T.; Doleček, R.; Matoušek, O. Development and application of spatial carrier interferometry for whole field real-time investigation of temperatures in liquid media. Int. J. Therm. Sci.
**2019**, 145, 106029. [Google Scholar] [CrossRef] - Kim, K. Pneumatic Measurements for Pressure, Velocity, and Flow-direction. Appl. Fluid. Meas. Tech.
**2016**, 61–100. [Google Scholar] [CrossRef] - Nour, M.A.; Hussain, M.M. A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications. Sensors
**2020**, 20, 3907. [Google Scholar] [CrossRef] [PubMed] - Berthet, H.; Jundt, J.; Durivault, J.; Mercier, B.; Angelescu, D. Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab Chip
**2011**, 11, 215–223. [Google Scholar] [CrossRef] [PubMed] - Meng, E.; Li, P.-Y.; Tai, Y.-C. A biocompatible Parylene thermal flow sensing array. Sens. Actuators A Phys.
**2008**, 144, 18–28. [Google Scholar] [CrossRef] - Kuo, J.T.W.; Yu, L.; Meng, E. Micromachined Thermal Flow Sensors—A Review. Micromachines
**2012**, 3, 550–573. [Google Scholar] [CrossRef][Green Version] - Trolinger, J.D.; Buckner, B.; L’Esperance, D. Background-oriented schlieren for the study of large flow fields. Opt. Eng. Appl.
**2015**, 9576, 95760. [Google Scholar] - Saravanan, S.; Nagashetty, K.; Hegde, G.M.; Jagadeesh, G.; Reddy, K.P.J. Schlieren Visualization of Shock Wave Phenomena over a Missile-Shaped Body at Hypersonic Mach Numbers. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2011**, 225, 26–34. [Google Scholar] [CrossRef] - Kleine, H.; Hiraki, K.; Maruyama, H.; Hayashida, T.; Yonai, J.; Kitamura, K.; Kondo, Y.; Etoh, T.G. High-speed time-resolved color schlieren visualization of shock wave phenomena. Shock Waves
**2005**, 14, 333–341. [Google Scholar] [CrossRef][Green Version] - Nel, L.; Skews, B.; Naidoo, K. Schlieren techniques for the visualization of an expansion fan/shock wave interaction. J. Vis.
**2014**, 18, 469–479. [Google Scholar] [CrossRef] - Passmann, M.; Wiesche, S.A.D.A.D.; Joos, F. Focusing Schlieren Visualization of Transonic Turbine Tip-Leakage Flows. Int. J. Turbomach. Propuls. Power
**2020**, 5, 1. [Google Scholar] [CrossRef][Green Version] - Aftab, S.; Younis, O.; Al-Atabi, M. Four Decades of Utilizing Shadowgraph Techniques to study Natural Convection in Cavities: Literature Review. IOP Conf. Ser. Mater. Sci. Eng.
**2012**, 36, 012021. [Google Scholar] [CrossRef] - Srivastava, A.; Phukan, A.; Panigrahi, P.; Muralidhar, K. Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph. Opt. Lasers Eng.
**2004**, 42, 469–485. [Google Scholar] [CrossRef] - Hijikuro, M.; Anyoji, M. Application of Optical Flow Analysis to Shadowgraph Images of Impinging Jet. J. Flow Control. Meas. Vis.
**2020**, 8, 173–187. [Google Scholar] [CrossRef] - Waynant, R.W.; Ediger, M.N. Electro-Optics Handbook; McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- Xu, F.; Patterson, J.C.; Lei, C. Shadowgraph observations of the transition of the thermal boundary layer in a side-heated cavity. Exp. Fluids
**2005**, 38, 770–779. [Google Scholar] [CrossRef] - Juste, G.L.; Benavides, E.M. Temperature Measurement in Small-Scale Flows with Digital Moiré Deflectometry. Exp. Heat Transf.
**2011**, 24, 201–214. [Google Scholar] [CrossRef] - Juste, G.; Fajardo, P. Assessment of experimental optical techniques for characterizing heat transfer using numerical simulations. Eng. Appl. Comput. Fluid Mech.
**2015**, 9, 1–15. [Google Scholar] [CrossRef][Green Version] - Stricker, J.; Keren, E.; Kafri, O. Axisymmetric density field measurements by moire deflectometry. AIAA J.
**1983**, 21, 1767–1769. [Google Scholar] [CrossRef] - Rasouli, S. Atmospheric Turbulence Characterization and Wavefront Sensing by Means of the Moiré Deflectometry. In Topics in Adaptive Optics; Intech: London, UK, 2012; p. 23. [Google Scholar] [CrossRef][Green Version]
- Applications of 2-D Moiré Deflectometry to Atmospheric Turbulence. J. Appl. Fluid Mech.
**2014**, 7, 651–657. [CrossRef] - Luxa, M.; Příhoda, J.; Šimurda, D.; Straka, P.; Synáč, J. Investigation of the compressible flow through the tip-section turbine blade cascade with supersonic inlet. J. Therm. Sci.
**2016**, 25, 138–144. [Google Scholar] [CrossRef] - Borjian, E.; Yousefi, T.; Ashjaee, M. Optical interferometry to investigate the heat transfer from a vertical cone under air jet impingement. Opt. Lasers Eng.
**2015**, 67, 205–211. [Google Scholar] [CrossRef] - Colombani, J.; Bert, J. Holographic interferometry for the study of liquids. J. Mol. Liq.
**2007**, 134, 8–14. [Google Scholar] [CrossRef][Green Version] - Cubreli, G.; Psota, P.; Dančová, P.; Lédl, V.; Vít, T. Digital Holographic Interferometry for the Measurement of Symmetrical Temperature Fields in Liquids. Photonics
**2021**, 8, 200. [Google Scholar] [CrossRef] - Psota, P.; Cubreli, G.; Kredba, J.; Stašík, M.; Ledl, V. Two Wavelength Digital Holographic Interferometry for Investigation of Dynamic Processes in Fluid Mechanics. Available online: https://dl.astfe.org/conferences/tfec2021,586fceb86446aa50,35eb4e3178980f3c.html (accessed on 1 August 2021).
- Agarwal, S.; Kumar, V.; Shakher, C. Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry. Opt. Lasers Eng.
**2018**, 102, 161–169. [Google Scholar] [CrossRef] - Li, C.; Liu, W.; Peng, X.; Shao, L.; Feng, S. Measurement of mass diffusion coefficients of O2 in aviation fuel through digital holographic interferometry. Chin. J. Aeronaut.
**2019**, 32, 1184–1189. [Google Scholar] [CrossRef] - Xi, T.; Di, J.; Li, Y.; Dai, S.; Ma, C.; Zhao, J. Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry. Opt. Express
**2018**, 26, 28497–28504. [Google Scholar] [CrossRef] - Meiners-Hagen, K.; Schödel, R.; Pollinger, F.; Abou-Zeid, A. Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers. Meas. Sci. Rev.
**2009**, 9, 16–26. [Google Scholar] [CrossRef][Green Version] - Malacara, D. Optical Shop Testing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Guerrero-Mendez, C.; Anaya, T.S.; Araiza-Esquivel, M.; Balderas-Navarro, R.E.; Aranda-Espinoza, S.; López-Martínez, A.; Olvera, C.A.O. Real-time measurement of the average temperature profiles in liquid cooling using digital holographic interferometry. Opt. Eng.
**2016**, 55, 121730. [Google Scholar] [CrossRef] - Anand, A.; Chhaniwal, V.K.; Narayanamurthy, C.S. Diffusivity studies of transparent liquid solutions by use of digital holographic interferometry. Appl. Opt.
**2006**, 45, 904–909. [Google Scholar] [CrossRef] - Naylor, D. Recent developments in the measurement of convective heat transfer rates by laser interferometry. Int. J. Heat Fluid Flow
**2003**, 24, 345–355. [Google Scholar] [CrossRef] - Narayan, S.; Singh, A.K.; Srivastava, A. Interferometric study of natural convection heat transfer phenomena around array of heated cylinders. Int. J. Heat Mass Transf.
**2017**, 109, 278–292. [Google Scholar] [CrossRef] - Herman, C.; Kang, E. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel. Heat Mass Transf.
**2001**, 37, 87–99. [Google Scholar] [CrossRef] - Picart, P. New Techniques in Digital Holography; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Psota, P.; Tang, H.; Pooladvand, K.; Furlong, C.; Rosowski, J.J.; Cheng, J.T.; Ledl, V. Multiple angle digital holography for the shape measurement of the unpainted tympanic membrane. Opt. Express
**2020**, 28, 24614. [Google Scholar] [CrossRef] [PubMed] - Bommareddi, R.R. Applications of Optical Interferometer Techniques for Precision Measurements of Changes in Temperature, Growth and Refractive Index of Materials. Technologies
**2014**, 2, 54–75. [Google Scholar] [CrossRef][Green Version] - Landsberg, G.S. Оптика/Optika, 5th ed.; Наука (Nauka): Moscow, Russia, 1976. [Google Scholar]
- Psota, P.; Mokrý, P.; Lédl, V.; Stašík, M.; Matoušek, O.; Kredba, J. Absolute and pixel-wise measurements of vibration amplitudes using time-averaged digital holography. Opt. Lasers Eng.
**2019**, 121, 236–245. [Google Scholar] [CrossRef] - Blanche, P.A. Optical Holography: Materials, Theory and Applications; Elsevier: St. Louis, MO, USA, 2020. [Google Scholar]
- Šidlof, P.; Riss, Š.; Vlček, V. Evaluation of Interferograms of unsteady subsonic airflow past a fluttering airfoil. In Topical Problems of Fluid Mechanics 2016; Czech Technical University in Prague-Central Library: Prague, Czech Republic, 2016; pp. 223–228. [Google Scholar]
- Ristic, S.; Linić, S.L.; Samardzic, M. Turbulence investigation in the VTI’s experimental aerodynamics laboratory. Therm. Sci.
**2017**, 21, 629–647. [Google Scholar] [CrossRef] - Kozic, M.; Ristic, S. Capability of two-dimensional Reynolds-averaged Navier—Stokes simulations for two-dimensional thrust vectoring nozzles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2010**, 224, 905–910. [Google Scholar] [CrossRef] - Htun, Y.E.; Myint, Z.Y. Some Principles of Flow Visualization Techniques in Wind Tunnels. Int. J. Adv. Sci. Eng. Technol.
**2016**, 4, 2321–9009. Available online: http://iraj.in (accessed on 19 October 2021). - Kleine, H.; Grönig, H.; Takayama, K. Simultaneous Shadow, Schlieren and Interferometric Visualization of Compressible Flows. Opt. Lasers Eng.
**2005**, 44, 170–189. [Google Scholar] [CrossRef] - Emmert, T.; Lafon, P.; Bailly, C. Numerical study of self-induced transonic flow oscillations behind a sudden duct enlargement. Phys. Fluids
**2009**, 21, 106105. [Google Scholar] [CrossRef][Green Version] - Ristić, S. Optical Methods in Wind Tunnel Flow Visualization; FME Trans: Belgrade, Serbia, 2006; Volume 34, pp. 7–13. Available online: https://www.researchgate.net/publication/277183175_Optical_methods_in_wind_tunnel_flow_visualization (accessed on 8 November 2021).
- Ledl, V.; Psota, P.; Doleček, R. Digital holographic setups for phase object measurements in micro and macro scale. In Proceedings of the EPJ Web of Conferences, Dresden, Germany, 25–29 August 2015; EDP Sciences: Les Ulis, France, 2015; Volume 92, p. 01001. [Google Scholar]
- Doleček, R.; Psota, P.; Lédl, V.; Vít, T.; Václavík, J.; Kopecký, V. General temperature field measurement by digital holography. Appl. Opt.
**2012**, 52, A319–A325. [Google Scholar] [CrossRef] - Malacara, Z.; Servín, M. Interferogram Analysis for Optical Testing; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]

**Figure 1.**Basic concept of the narrow channel measurement. Dashed rectangle represents the investigated area.

**Figure 3.**Scheme of the setup: LAS—laser, FS—fiber splitter, FF—fiber ferrule, L0 + L1 + L2—lens, MA—measured area, P0 + P1—pressure probes, WT—wind tunnel, NBS—beamsplitter, CAM—camera.

**Figure 4.**(

**a**) Intensity image (interferogram) captured during measurements, with the zoomed part showing the interference pattern, (

**b**) its Fourier spectrum, (

**c**) the phase change map with region of interest (ROI) marked by the dashed line, and (

**d**) unwrapped phase change map with ROI.

**Figure 5.**(

**a**) Density distributions for different regimes—comparison of measured data (

**left**) and the CFD simulations (

**right**); (

**b**) density values along the profile denoted in (

**a**) for regime #5.

**Figure 6.**Slope maps of measured (top—M) and simulated (bottom—S) density distributions in different flow regimes.

Regime | #1 | #2 | #3 | #4 | #5 |
---|---|---|---|---|---|

P_{out} (kPa) | 54.923 | 47.140 | 39.236 | 28.114 | 23.871 |

η [1] | 0.560 | 0.481 | 0.400 | 0.287 | 0.243 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Psota, P.; Çubreli, G.; Hála, J.; Šimurda, D.; Šidlof, P.; Kredba, J.; Stašík, M.; Lédl, V.; Jiránek, M.; Luxa, M.; Lepicovsky, J. Characterization of Supersonic Compressible Fluid Flow Using High-Speed Interferometry. *Sensors* **2021**, *21*, 8158.
https://doi.org/10.3390/s21238158

**AMA Style**

Psota P, Çubreli G, Hála J, Šimurda D, Šidlof P, Kredba J, Stašík M, Lédl V, Jiránek M, Luxa M, Lepicovsky J. Characterization of Supersonic Compressible Fluid Flow Using High-Speed Interferometry. *Sensors*. 2021; 21(23):8158.
https://doi.org/10.3390/s21238158

**Chicago/Turabian Style**

Psota, Pavel, Gramoz Çubreli, Jindřich Hála, David Šimurda, Petr Šidlof, Jan Kredba, Marek Stašík, Vít Lédl, Michal Jiránek, Martin Luxa, and Jan Lepicovsky. 2021. "Characterization of Supersonic Compressible Fluid Flow Using High-Speed Interferometry" *Sensors* 21, no. 23: 8158.
https://doi.org/10.3390/s21238158