Characterization of the Relationship between the Loess Moisture and Image Grayscale Value
Abstract
:1. Introduction
2. Test Materials
2.1. Loess Soil
2.2. Sample Preparation
3. Test Apparatus and Methods
3.1. Test Instruments and Procedures
3.2. Data Processing
4. Results
4.1. Effect of Dry Density on WGCC
4.2. Effect of Particle Size Distribution on WGCC
4.3. Influence of Illumination on WGCC
5. Discussion
5.1. Intrinsic Correlation between Soil Water Type and WGCC Stage Transition
5.2. WGCC Model
5.3. WGCC Model Parameters and Implications
5.4. Validation of WGCC Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smalley, I.; Marković, S.B.; Svirčev, Z. Loess is [almost totally formed by] the accumulation of dust. Quat. Int. 2011, 240, 4–11. [Google Scholar] [CrossRef]
- Pye, K. The nature, origin and accumulation of loess. Quat. Sci. Rev. 1995, 14, 653–667. [Google Scholar] [CrossRef]
- Sun, J. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 2002, 203, 845–859. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Li, B. Loess and Loess Geohazards in China; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bishop, A.W.; Blight, G.E. Some Aspects of Effective Stress in Saturated and Partly Saturated Soils. Géotechnique 1963, 13, 177–197. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Morgenstern, N.R. Stress state variables for unsaturated soils. J. Geotech. Geoenviron. Eng. 1977, 103, 447–466. [Google Scholar] [CrossRef]
- Khalili, N.G.F.A. Effective stress in unsaturated soils: Review with new evidence. Int. J. Geomech. 2004, 4, 115–126. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction Stress Characteristic Curve for Unsaturated Soil. J. Geotech. Geoenviron. Eng. 2006, 32, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Castelblanco, J.; Delage, P.; Pereira, J.; Cui, Y. Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Géotech. Lett. 2011, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Yan, Y. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng. Geol. 2014, 168, 46–58. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Mu, Q.Y.; Zhou, C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures. Can. Geotech. J. 2017, 54, 270–279. [Google Scholar] [CrossRef]
- Derbyshire, E. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth-Sci. Rev. 2001, 54, 231–260. [Google Scholar] [CrossRef]
- Peng, J.; Sun, P.; Igwe, O. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China. Eng. Geol. 2018, 236, 79–88. [Google Scholar] [CrossRef]
- Xu, X.-Z.; Guo, W.-Z.; Liu, Y.-K.; Ma, J.-Z.; Wang, W.-L.; Zhang, H.-W.; Gao, H. Landslides on the Loess Plateau of China: A latest statistics together with a close look. Nat. Hazards 2017, 86, 1393–1403. [Google Scholar] [CrossRef]
- Heimovaara, T.J. Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils. Water Resour. Res. 1994, 30, 189–199. [Google Scholar] [CrossRef]
- Calamita, G.; Brocca, L.; Perrone, A.; Piscitelli, S.; Lapenna, V.; Melone, F.; Moramarco, T. Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. J. Hydrol. 2012, 454, 101–112. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Y.; Cheng, Q.; Zheng, X.; Zhao, Y. Determining forest duff water content using a low-cost standing wave ratio sensor. Sensors 2018, 18, 647. [Google Scholar] [CrossRef] [Green Version]
- Matula, S.; Báťková, K.; Legese, W.L. Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors 2016, 16, 1912. [Google Scholar] [CrossRef] [Green Version]
- Yoder, R.E.; Johnson, D.L.; Wilkerson, J.B.; Yoder, D.C. Soilwater sensor performance. Appl. Eng. Agric. 1998, 14, 121–133. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Finn, M.P.; Lewis, M.; Bosch, D.D.; Giraldo, M.; Yamamoto, K.; Sullivan, D.G.; Kincaid, R.; Luna, R.; Allam, G.K.; Kvien, C.; et al. Remote sensing of soil moisture using airborne hyperspectral data. GISci. Remote Sens. 2011, 48, 522–540. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; De Jeu, R.A.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Hafizah, S.N.; Khairunniza, B.S. Colour spaces for paddy soil moisture content determination. J. Trop. Agric. Food Sci. 2011, 39, 103–115. [Google Scholar]
- Persson, M. Estimating surface soil moisture from soil color using image analysis. Vadose Zone J. 2005, 4, 1119–1122. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Shao, M.; Horton, R. Estimating soil water content from surface digital image gray level measurements under visible spectrum. Can. J. Soil Sci. 2011, 91, 69–76. [Google Scholar] [CrossRef]
- Zhang, R.; He, J.; Wu, T.; Feng, Y. Methods for on-line measurement of soil moisture content based on image processing technique. Trans. Chin. Soc. Agric. Eng. 2007, 10, 57–61. [Google Scholar]
- Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Mollazade, K.; Hasanzadeh, R. Development of a novel machine vision procedure for rapid and non-contact measurement of soil moisture content. Measurement 2018, 121, 179–189. [Google Scholar] [CrossRef]
- Kim, D.; Son, Y.; Park, J.; Kim, T.; Jeon, J. Evaluation of calibration method for field application of UAV-based soil water content prediction equation. Adv. Civ. Eng. 2019, 2019, 2486216. [Google Scholar] [CrossRef] [Green Version]
- Kirillova, N.P.; Zhang, Y.; Hartemink, A.E.; Zhulidova, D.A.; Artemyeva, Z.S.; Khomyakov, D.M. Calibration methods for measuring the color of moist soils with digital cameras. CATENA 2021, 202, 105274. [Google Scholar] [CrossRef]
- Zanetti, S.S.; Cecílio, R.A.; Alves, E.G.; Silva, V.H.; Sousa, E.F. Estimation of the moisture content of tropical soils using colour images and artificial neural networks. Catena 2015, 135, 100–106. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Q. Chance and challenge for China on ecosystem management: Lessons from the West-to-East pipeline project construction. AMBIO A J. Hum. Environ. 2006, 35, 91–93. [Google Scholar] [CrossRef]
- Huiquan, Y.; Wei, F.; Zhaoxu, Z.; Dong, W. A monitoring and early warning system for geological haz-ards in the Line One of the West-East Gas Pipeline. Nat. Gas Ind. 2012, 32, 81–84. [Google Scholar]
- Wang, J.; Xiang, W.; Wu, Y. Study on the Seepage Field and Underground Erosion of a Loess Pipeline Foundation. J. Pipeline Syst. Eng. Pract. 2015, 6, 771–788. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L. Spatial distribution and mechanism of geological hazards along the oil pipeline planned in western China. Eng. Geol. 1999, 51, 195–201. [Google Scholar] [CrossRef]
- Lu, P.; Jefferson, I.F.; Rosenbaum, M.S.; Smalley, I.J. Fractal characteristics of loess formation: Evidence from laboratory experiments. Eng. Geol. 2003, 69, 287–293. [Google Scholar] [CrossRef]
- Mokritskaya, T.P.; Tushev, A.V.; Nikulchev, E.V.; Samoylich, K.A. On the fractal characteristics of loess subsidence. Contemp. Eng. Sci. 2016, 9, 799–807. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Bai, Z.; Guo, L. Multi-fractal characteristics of the particle distribution of reconstructed soils and the relationship between soil properties and multi-fractal parameters in an opencast coal-mine dump in a loess area. Environ. Earth Sci. 2015, 73, 4749–4762. [Google Scholar] [CrossRef]
Basic Properties | Values | Mineral | Content (%) |
---|---|---|---|
In situ water content ω | 20.8% | Quartz | 40 |
In situ density, ρ | 1.46 g/cm3 | Feldspar | 15 |
Liquid limit, wL | 32.2% | Calcite | 10 |
Plastic limit, wp | 20.2% | Clay minerals | 30 |
Specific gravity, Gs | 2.71 | Others | 5 |
Specimen ID | Dry Density (g/cm3) | Mass Fractal Dimension | Illumination (lux) |
---|---|---|---|
D1 | 1.4 | 2.62 | 5000 |
D2 | 1.5 | 2.62 | 5000 |
D3 | 1.6 | 2.62 | 5000 |
D4 | 1.7 | 2.62 | 5000 |
G1 | 1.6 | 2.6 | 5000 |
G2 | 1.6 | 2.7 | 5000 |
G3 | 1.6 | 2.8 | 5000 |
G4 | 1.6 | 2.9 | 5000 |
L1 | 1.6 | 2.6 | 5000 |
L2 | 1.6 | 2.6 | 6000 |
L3 | 1.6 | 2.6 | 6500 |
L4 | 1.6 | 2.6 | 7000 |
Specimen ID | D1 | D2 | D3 | D4 | G1 | G2 | G3 | G4 | |
---|---|---|---|---|---|---|---|---|---|
Input values | Gs | 72.7 | 75.3 | 76.3 | 76.9 | 74.2 | 74.4 | 74.5 | 74.6 |
Gr | 127.8 | 130.5 | 131.2 | 130.8 | 128.6 | 129.0 | 128.6 | 129.1 | |
Best-fit values | a | 6335 | 4347 | 3788 | 2813 | 94,620 | 84,070 | 17,310 | 48,470 |
b | 3.781 | 3.921 | 4.021 | 3.967 | 4.406 | 4.472 | 4.234 | 4.688 | |
c | 0.634 | 0.741 | 0.754 | 0.819 | 0.479 | 0.448 | 0.576 | 0.499 | |
R-squared | R2 | 0.997 | 0.998 | 0.997 | 0.996 | 0.998 | 0.997 | 0.996 | 0.997 |
Sample ID | V1 | V2 | V3 | V4 | V5 | V6 |
---|---|---|---|---|---|---|
Sampling location | Urumchi | Wuwei | Lanzhou | Guyuan | Yan’an | Xi’an |
Chronological age | Q3 | Q3 | Q2 | Q3 | Q2 | Q2 |
In situ dry density/g·cm−3 | 1.48 | 1.45 | 1.59 | 1.42 | 1.56 | 1.61 |
Clay fraction/% (<0.005 mm) | 8.4 | 13.5 | 15.5 | 11.2 | 16.8 | 21.4 |
Silt fraction/% (0.075–0.005 mm) | 82.8 | 81.9 | 82.0 | 85.3 | 79.4 | 75.9 |
Sand fraction/% (>0.075 mm) | 8.8 | 4.6 | 2.5 | 3.5 | 3.8 | 2.7 |
Sample ID | V1 | V2 | V3 | V4 | V5 | V6 | |
---|---|---|---|---|---|---|---|
Input values | Gs | 89.5 | 71.4 | 107.2 | 84.5 | 77.4 | 118.1 |
Gr | 212.4 | 125.4 | 215.2 | 193.8 | 130.8 | 214.2 | |
Best-fit values | a | 110,626 | 154 | 214,960 | 62,373 | 4213 | 11,970 |
b | 5.287 | 3.063 | 5.551 | 6.353 | 5.147 | 5.020 | |
c | 0.537 | 1.898 | 0.543 | 0.638 | 1.639 | 0.718 | |
R-squared | R2 | 0.997 | 0.999 | 0.996 | 0.998 | 0.998 | 0.997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, J.; Zheng, H.; Hu, T.; Zheng, J. Characterization of the Relationship between the Loess Moisture and Image Grayscale Value. Sensors 2021, 21, 7983. https://doi.org/10.3390/s21237983
Liu Q, Wang J, Zheng H, Hu T, Zheng J. Characterization of the Relationship between the Loess Moisture and Image Grayscale Value. Sensors. 2021; 21(23):7983. https://doi.org/10.3390/s21237983
Chicago/Turabian StyleLiu, Qingbing, Jinge Wang, Hongwei Zheng, Tie Hu, and Jie Zheng. 2021. "Characterization of the Relationship between the Loess Moisture and Image Grayscale Value" Sensors 21, no. 23: 7983. https://doi.org/10.3390/s21237983
APA StyleLiu, Q., Wang, J., Zheng, H., Hu, T., & Zheng, J. (2021). Characterization of the Relationship between the Loess Moisture and Image Grayscale Value. Sensors, 21(23), 7983. https://doi.org/10.3390/s21237983