HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Performance Evaluation
3.2. Visualization of the Predicted Stress Condition for Evaluating Accuracy Based on Test Data
3.3. Visualization of the Network Feature and Layer Activations
3.3.1. Convolution Layer
3.3.2. Batch-Normalization Layer
3.3.3. Rectified Linear Unit (ReLU) Layer
3.3.4. LeakyReLU
3.3.5. ClippedReLU
3.3.6. Average Pooling
3.3.7. Max Pooling
3.3.8. Addition Layer
3.3.9. Depth Concatenation
3.3.10. Concatenation and Dropout
3.3.11. Group Normalization
3.3.12. Global Average Pooling
3.3.13. Fully Connected Layer
3.3.14. Softmax Layer
4. Discussion
4.1. Network Stress Condition Prediction Accuracy Evaluation Using the TSNE Algorithm
4.2. Exploration of Observations in the t-SNE (t-Distributed Stochastic Neighbor Embedding) Plot
4.3. Predicted Result Evaluation Based on Occlusion Sensitivity and the LIME (Locally Interpretable Model-Agnostic Explanation) Technique
5. Conclusions
- − Classification of uneven data sets under various stress conditions, which may lead to lack of information and diversity of images and stress conditions. Most pre-trained networks converge with higher accuracy after 25 epochs but HortNet417v1 requires 36 epochs and more time to achieve higher accuracy. This response is because the weight of the pretrained model (Xception, ShuffleNet, and MobileNetv2) which is trained with millions of images, when actuated on a new training dataset, can converge at a faster rate than a network like HortNet417v1 in which network weights are randomly initialized instead of inherited from the previous model.
- − In this experiment, we collect image data through a handheld mobile phone. In our next experiment, we will use some other fixed imaging platform surrounding the target plant to capture more time series data under various stress conditions and thus will improve the image data diversity and imbalance of the data amount between the stress conditions.
- − Since the development of the network is a continuous process, the authors plan to modify the network structure, optimize the network hyperparameters, and train the network with more data to improve the prediction accuracy in real time. Then, this technology makes it possible to extend the study to a large agricultural area, not only for peach trees, but also for other types of fruit tree.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryla, D.R.; Dickson, E.; Shenk, R.; Johnson, R.; Crisosto, C.H.; Trout, T.J. Influence of irrigation method and scheduling on patterns of soil and tree water status and its relation to yield and fruit quality in peach. J. Am. Soc. Hort. Sci. 2005, 40, 2118–2124. [Google Scholar]
- Parker, M.L.; Hull, J.; Perry, R.L. Orchard floor management affects peach rooting. J. Am. Soc. Hort. Sci. 1993, 118, 714–718. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrisqueta, I.; Conejero, W.; Valdes-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Comput. Electron. Agric. 2015, 114, 7–13. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Pérez-Sarmiento, F.; Alcobendas, R.; Alarcón, J.J.; Mounzer, O.; Nicolás, E. Using midday stem water potential for scheduling deficit irrigation in mid–late maturing peach trees under Mediterranean conditions. Irrig. Sci. 2016, 34, 161–173. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar]
- Wakamori, K.; Mizuno, R.; Nakanishi, G.; Mineno, H. Multimodal neural network with clustering-based drop for estimating plant water stress. Comput. Electron. Agric. 2020, 168, 105118. [Google Scholar] [CrossRef]
- Fricke, W. Water transport and energy. Plant Cell Environ. 2017, 40, 977–994. [Google Scholar] [CrossRef]
- Kamarudin, M.H.; Ismail, Z.H.; Saidi, N.B. Deep learning sensor fusion in plant water stress assessment: A comprehensive review. Appl. Sci. 2021, 11, 1403. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. A very deep convolutional networks for large-scale image recognition. In Proceeding of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- McCutchan, H.; Shackel, K.A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hort. Sci. 1992, 117, 607–611. [Google Scholar]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology. 1997, 7, 23–29. [Google Scholar]
- Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Application of deep learning for dense scenes analysis in agriculture: A review. Sensors 2020, 20, 1520. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Geoffrey, E.H. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Hannan, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al. Deep Speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567, 12. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, 37, 11. [Google Scholar]
- Wu, Y.; He, K. Group Normalization. arXiv 2018, arXiv:1803.0849, 10. [Google Scholar]
- Scherer, D.; Mueller, A.; Behnke, S. Evaluation of pooling operations in convolution architectures for object recognition. In Proceedings of the 20th International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010. [Google Scholar]
- Nagi, J.; Ducatelle, F.; Di Caro, G.A.; Ciresan, D.; Meier, U.; Giusti, A.; Nagi, F.; Schmidhuber, J.; Gambardella, L.M. Max-pooling convolutional neural networks for vision-based hand gesture recognition. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications, Kuala Lumpur, Malaysia, 16–18 November 2011. [Google Scholar]
- Yani, M.; Irawan, B.; Setiningsih, C. Application of transfer learning using convolutional neural network method for early detection of Terry’s nail. J. Phys. Conf. Ser. 2019, 1201, 10. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolution neural networks. Adv. Neural Inf. Proc. Syst. 2012, 25, 1097–1105. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. arXiv 2017, arXiv:1707.07012, 14. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Identity mappings in deep residual networks. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. arXiv 2017, arXiv:1610.02357, 8. [Google Scholar]
- Zhang, X.; Xinyu, Z.; Mengxiao, L.; Jian, S. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. arXiv 2017, arXiv:1707.01083, 9. [Google Scholar]
- Landola, F.N.; Song, H.; Matthew, W.; Moskewicz, K.A.; William, J.D.; Kurt, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2016. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. arXiv 2014, arXiv:1409.4842, 12. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVM Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 23–28 June 2018. [Google Scholar]
- Van der Maaten, L.; Geoffrey, H. Visualizing data using t-SNE. J. Mac. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2016. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016. [Google Scholar]
Layer Name | Total Number of Layers | Layer Name | Total Number of Layers |
---|---|---|---|
Image Input | 1 | Group Normalization | 6 |
Convolution | 124 | Addition layer | 12 |
ReLU | 65 | Depth Concatenation | 7 |
Clipped ReLU | 31 | Global Average Pooling | 1 |
Leaky ReLU | 25 | Concatenation | 1 |
Dropout (10%) | 1 | Fully Connected | 1 |
Batch Normalization | 112 | Softmax | 1 |
Average Pooling | 14 | Pixel classification (Output) | 1 |
Max Pooling | 14 |
Network | Number of Layers | Input Image Size | References |
---|---|---|---|
NasNet-Mobile | 913 | 224 × 224 × 3 | [26] |
ResNet-50 | 177 | 224 × 224 × 3 | [27] |
Xception | 170 | 299 × 299 × 3 | [28] |
ShuffleNet | 172 | 224 × 224 × 3 | [29] |
SqueezeNet | 68 | 227 × 227 × 3 | [30] |
GoogleNet | 144 | 224 × 224 × 3 | [31] |
MobileNetv2 | 154 | 224 × 224 × 3 | [32] |
HortNet417v1 | 417 | 240 × 240 × 3 | - |
Network | Time (Min) | Max Epoch | TA (%) | VA (%) | TeA (%) | TL (%) | VL (%) |
---|---|---|---|---|---|---|---|
NasNet-Mobile | 225.58 | 25 | 98.50 | 96.10 | 96.80 | 3.00 | 11.00 |
ResNet-50 | 26.35 | 25 | 98.85 | 94.56 | 94.00 | 4.00 | 16.00 |
Xception | 29.23 | 24 | 100 | 96.18 | 97.20 | 2.00 | 11.00 |
ShuffleNet | 23.18 | 22 | 100 | 92.60 | 93.60 | 3.00 | 21.00 |
SqueezeNet | 6.54 | 27 | 58.85 | 59.16 | 62.00 | 89.00 | 87.00 |
GoogleNet | 1.31 | 3 | 28.85 | 30.08 | 20.00 | 15.50 | 15.20 |
MobileNetv2 | 19.3 | 26 | 100 | 94.13 | 95.40 | 2.00 | 20.00 |
HortNet417v1 | 213 | 36 | 90.77 | 90.52 | 93.00 | 21.00 | 20.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.P.; Yamane, T. HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress. Sensors 2021, 21, 7924. https://doi.org/10.3390/s21237924
Islam MP, Yamane T. HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress. Sensors. 2021; 21(23):7924. https://doi.org/10.3390/s21237924
Chicago/Turabian StyleIslam, Md Parvez, and Takayoshi Yamane. 2021. "HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress" Sensors 21, no. 23: 7924. https://doi.org/10.3390/s21237924
APA StyleIslam, M. P., & Yamane, T. (2021). HortNet417v1—A Deep-Learning Architecture for the Automatic Detection of Pot-Cultivated Peach Plant Water Stress. Sensors, 21(23), 7924. https://doi.org/10.3390/s21237924