Thermographic Fault Diagnosis of Ventilation in BLDC Motors
Abstract
:1. Introduction
Related Work
2. Analyzed States of BLDC Motors
3. Thermographic Measurements for the BLDC
4. The Developed Thermal Fault Diagnosis Method
4.1. Common Part of Arithmetic Mean of Thermographic Images (CPoAMoTI)
- Gray-scale thermal images (256 colors, matrices 320 × 240) are grouped as training and test sets.
- Compute image of the arithmetic mean using thermal images of training set:
- Compute differences:diffj = |classk − classg|,
- Compute the following sum:
- Compute the value of M:M = max(sum_avg),
- Compute the value of m:m = p × M,
- For each training and test thermal image, computeC = TI + sum_avg − G,
- In matrix C, set 0 for values less than zero. The computed images are as follows: images C1, C2, …, C44 for the training set and C51, …, C290 for the test set (only for analyzed fan).
- Compute image subtraction:di = |Ca − Cb|,
- Compute sums of pixel values si for each computed matrix di,
- Find the lowest value of the computed sums.
- Detect the proper class of the BLDC motor.
5. Results of the Analysis
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlShorman, O.; Irfan, M.; Saad, N.; Zhen, D.; Haider, N.; Glowacz, A.; AlShorman, A. A Review of Artificial Intelligence Methods for Condition Monitoring and Fault Diagnosis of Rolling Element Bearings for Induction Motor. Shock Vib. 2020, 2020, 8843759. [Google Scholar] [CrossRef]
- Yao, J.; Liu, C.; Song, K.; Feng, C.; Jiang, D. Fault diagnosis of planetary gearbox based on acoustic signals. Appl. Acoust. 2021, 181, 108151. [Google Scholar] [CrossRef]
- Pham, M.T.; Kim, J.-M.; Kim, C.H. Intelligent Fault Diagnosis Method Using Acoustic Emission Signals for Bearings under Complex Working Conditions. Appl. Sci. 2020, 10, 7068. [Google Scholar] [CrossRef]
- Wang, R.; Liu, F.; Hou, F.; Jiang, W.; Hou, Q.; Yu, L. A Non-Contact Fault Diagnosis Method for Rolling Bearings Based on Acoustic Imaging and Convolutional Neural Networks. IEEE Access 2020, 8, 132761–132774. [Google Scholar] [CrossRef]
- Hou, J.; Sun, H.; Xu, A.; Gong, Y.; Ning, D. Fault diagnosis of synchronous hydraulic motor based on acoustic signals. Adv. Mech. Eng. 2020, 12, 168781402091610. [Google Scholar] [CrossRef]
- Glowacz, A. Diagnostics of Rotor Damages of Three-Phase Induction Motors Using Acoustic Signals and SMOFS-20-EXPANDED. Arch. Acoust. 2016, 41, 507–515. [Google Scholar] [CrossRef]
- Yu, L.; Yao, X.; Yang, J.; Li, C. Gear Fault Diagnosis through Vibration and Acoustic Signal Combination Based on Convolutional Neural Network. Information 2020, 11, 266. [Google Scholar] [CrossRef]
- Qiang, Z.; Jieying, G.; Junming, L.; Ying, T.; Shilei, Z. Gearbox fault diagnosis using data fusion based on self-organizing map neural network. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772092347. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Chen, S.; Li, Z.; Wang, J. A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 369–380. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Wang, S.; Li, W.; Sarkodie-Gyan, T.; Feng, S. A hybrid deep-learning model for fault diagnosis of rolling bearings. Measurement 2020, 169, 108502. [Google Scholar] [CrossRef]
- Ranjan, J.; Patra, K.; Szalay, T.; Mia, M.; Gupta, M.K.; Song, Q.; Krolczyk, G.; Chudy, R.; Pashnyov, V.A.; Pimenov, D.Y. Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors. Sensors 2020, 20, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawczuk, W.; Ulbrich, D.; Kowalczyk, J.; Merkisz-Guranowska, A. Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals. Sensors 2021, 21, 5927. [Google Scholar] [CrossRef] [PubMed]
- Al-Musawi, A.; Anayi, F.; Packianather, M. Three-phase induction motor fault detection based on thermal image segmentation. Infrared Phys. Technol. 2020, 104, 103140. [Google Scholar] [CrossRef]
- Khanjani, M.; Ezoji, M. Electrical fault detection in three-phase induction motor using deep network-based features of thermograms. Measurement 2021, 173, 108622. [Google Scholar] [CrossRef]
- Devarajan, G.; Chinnusamy, M.; Kaliappan, L. Detection and classification of mechanical faults of three phase induction motor via pixels analysis of thermal image and adaptive neuro-fuzzy inference system. J. Ambient Intell. Humaniz. Comput. 2021, 12, 4619–4630. [Google Scholar] [CrossRef]
- Redon, P.; Rodenas, M.P.; Antonino-Daviu, J. Development of a diagnosis tool, based on deep learning algorithms and infrared images, applicable to condition monitoring of induction motors under transient regime. In Proceedings of the IECON 2020: The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar]
- Pérez, C.J.M.; Rangel-Magdaleno, J.; Peregrina-Barreto, H.; Ramirez-Cortes, J.; Vazquez-Pacheco, E. Bearing Fault Detection Technique by using Thermal Images: A case of Study. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Choudhary, A.; Goyal, D.; Letha, S.S. Infrared Thermography-Based Fault Diagnosis of Induction Motor Bearings Using Machine Learning. IEEE Sens. J. 2021, 21, 1727–1734. [Google Scholar] [CrossRef]
- Palanivel, A.; Padmanabhan, S. Software-based performance estimation and real-time thermal analysis of brushless direct current motor with corroded permanent magnets. Comput. Electr. Eng. 2018, 71, 938–952. [Google Scholar] [CrossRef]
- Osornio-Rios, R.A.; Antonino-Daviu, J.A.; de Jesus Romero-Troncoso, R. Recent Industrial Applications of Infrared Thermography: A Review. IEEE Trans. Ind. Inform. 2019, 15, 615–625. [Google Scholar] [CrossRef]
- Ortega, M.; Ivorra, E.; Juan, A.; Venegas, P.; Martínez, J.; Alcañiz, M. MANTRA: An Effective System Based on Augmented Reality and Infrared Thermography for Industrial Maintenance. Appl. Sci. 2021, 11, 385. [Google Scholar] [CrossRef]
- Transmetra. Table of Emissivity of Various Surfaces. Available online: https://www.transmetra.ch/component/jifile/download/NjEyOGJhN2M4YTNkZDNmN2ExMzhmODBkOGJiNmI3NmE=/emissivity-table-pdf (accessed on 18 September 2021).
- Xu, H.; Przystupa, K.; Fang, C.; Marciniak, A.; Kochan, O.; Beshley, M. A Combination Strategy of Feature Selection Based on an Integrated Optimization Algorithm and Weighted K-Nearest Neighbor to Improve the Performance of Network Intrusion Detection. Electronics 2020, 9, 1206. [Google Scholar] [CrossRef]
- Fan, S.-K.S.; Cheng, C.-W.; Tsai, D.-M. Fault Diagnosis of Wafer Acceptance Test and Chip Probing Between Front-End-of-Line and Back-End-of-Line Processes. IEEE Trans. Autom. Sci. Eng. 2021, 1–15. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, Z. Diagnosis of the three-phase induction motor using thermal imaging. Infrared Phys. Technol. 2017, 81, 7–16. [Google Scholar] [CrossRef]
- Glowacz, A. Fault diagnosis of electric impact drills using thermal imaging. Measurement 2021, 171, 108815. [Google Scholar] [CrossRef]
State of the BLDC (Fan) | Sum of Pixel Values |
---|---|
healthy BLDC motor at 1450 rpm | 1575.6 |
healthy BLDC motor at 2100 rpm | 975.5 |
blocked ventilation of the BLDC motor at 1450 rpm | 1910.9 |
blocked ventilation of the BLDC motor at 2100 rpm | 1428.3 |
State of the BLDC | EBLDC [%] |
---|---|
EBLDC1, healthy BLDC motor at 1450 rpm | 100 |
EBLDC2, healthy BLDC motor at 2100 rpm | 98.33 |
EBLDC3, blocked ventilation of the BLDC motor at 1450 rpm | 100 |
EBLDC4, blocked ventilation of the BLDC motor at 2100 rpm | 100 |
AMEBLDC [%] | |
AMEBLDC | 99.58 |
State of the BLDC | EBLDC [%] |
---|---|
EBLDC1, healthy BLDC motor at 1450 rpm | 100 |
EBLDC2, healthy BLDC motor at 2100 rpm | 100 |
EBLDC3, blocked ventilation of the BLDC motor at 1450 rpm | 100 |
EBLDC4, blocked ventilation of the BLDC motor at 2100 rpm | 100 |
AMEBLDC [%] | |
AMEBLDC | 100 |
State of the BLDC | EBLDC [%] |
---|---|
EBLDC5, healthy clipper | 100 |
EBLDC6, blocked ventilation of the clipper | 100 |
AMEBLDC [%] | |
AMEBLDC | 100 |
Analyzed Method | MoASoID | BCAoID | CPoAMoTI |
---|---|---|---|
Type of motor | Three-phase induction motor | Commutator motor | BLDC motor |
Power of the analyzed motor | 550 W | 500 W | 25 W, 5.4 W |
Analyzed faults of the motor | electrical | mechanical | mechanical |
Temperature range of analyzed thermal images | 21–38.7 °C | 27.6–39 °C | 34.1–43.1 °C 28.7–41.9 °C |
Measurement with Vibrations | No | 0.05 m offset | Vibration 0–0.5 m/s2 |
Thresholding | Binarization, 1 time | Binarization, 2 times | C = TI + sum_avg − G, negative values to 0 |
Problems with unnecessary elements in the image (label, temperature, scale bar) | Yes | No | No |
Differences | Between images of training and test sets | Between images of training and test sets | Between arithmetic means of training classes |
Number of analyzed features | 1 feature— Sum of pixels | 1 feature— Sum of pixels | Matrix 320 × 240 |
Number of analyzed classes | 3 | 3 | 4 + 2 |
Recognition | Nearest Neighbor classifier, K-means, backpropagation neural network) | Nearest Neighbor classifier and the backpropagation neural network | Difference between features (matrices C) |
Scale | Rainbow | Gray-scale | Gray-scale |
Recognition Rate (%) | 100 | 97.91–100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glowacz, A. Thermographic Fault Diagnosis of Ventilation in BLDC Motors. Sensors 2021, 21, 7245. https://doi.org/10.3390/s21217245
Glowacz A. Thermographic Fault Diagnosis of Ventilation in BLDC Motors. Sensors. 2021; 21(21):7245. https://doi.org/10.3390/s21217245
Chicago/Turabian StyleGlowacz, Adam. 2021. "Thermographic Fault Diagnosis of Ventilation in BLDC Motors" Sensors 21, no. 21: 7245. https://doi.org/10.3390/s21217245
APA StyleGlowacz, A. (2021). Thermographic Fault Diagnosis of Ventilation in BLDC Motors. Sensors, 21(21), 7245. https://doi.org/10.3390/s21217245