Performance and Deployment of Low-Cost Particle Sensor Units to Monitor Biomass Burning Events and Their Application in an Educational Initiative
Abstract
:1. Introduction
- Develop a smoke-specific calibration curve for the low-cost sensor SMOG units developed in this study and test how the calibrated data set for PM2.5 compares against gravimetric mass measurements and reference instruments at three different locations and during different seasons.
- Assess the suitability of low-cost particle sensors to detect ambient smoke events and provide insights into the spatial and temporal patterns of these events.
- Develop a school STEM curriculum focusing on the construction, deployment and analysis of data from low-cost particle sensors to assess biomass burning impacts on regional air quality where regulatory air quality monitoring is sparse.
2. Materials and Methods
2.1. Instruments
2.2. Measurement Locations
2.3. Data Analysis
2.4. Development of STEM Project
3. Results and Discussion
3.1. Development of Calibration Curve for SMOG Units
3.2. PM2.5 Measurement Statistics
3.3. Inter-Comparison of SMOG Units
3.4. Evaluation of PM2.5 Measurements Made by Optical Instruments versus Gravimetric Mass Measurements
3.5. Performance Assessment of SMOG Units
3.6. Capturing Smoke Plume Events
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Doubleday, A.; Schulte, J.; Sheppard, L.; Kadlec, M.; Dhammapala, R.; Fox, J.; Isaksen, T.B. Mortality associated with wildfire smoke exposure in Washington state, 2006–2017: A case-crossover study. Environ. Health 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef]
- Arriagada, N.B.; Palmer, A.J.; Bowman, D.M.; Morgan, G.; Jalaludin, B.B.; Johnston, F.H. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 2020, 213, 282–283. [Google Scholar] [CrossRef]
- Ford, B.; Martin, M.V.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2, 229–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arriagada, N.B.; Horsley, J.A.; Palmer, A.J.; Morgan, G.; Tham, R.; Johnston, F.H. Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis. Environ. Res. 2019, 179, 108777. [Google Scholar] [CrossRef]
- Morgan, G.; Sheppeard, V.; Khalaj, B.; Ayyar, A.; Lincoln, D.; Jalaludin, B.; Beard, J.; Corbett, S.; Lumley, T. Effects of Bushfire Smoke on Daily Mortality and Hospital Admissions in Sydney, Australia. Epidemiology 2010, 21, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Dennekamp, M.; Abramson, M.J. The effects of bushfire smoke on respiratory health. Respirology 2011, 16, 198–209. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Persp. 2012, 120, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2010, 4, 27–31. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Doraiswamy, P.; Levy, R.; Pikelnaya, O.; Maibach, J.; Feenstra, B.; Polidori, A.; Kiros, F.; Mills, K.C. Impact of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations. GeoHealth 2018, 2, 172–181. [Google Scholar] [CrossRef]
- Mallia, D.V.; Kochanski, A.K.; Kelly, K.E.; Whitaker, R.; Xing, W.; Mitchell, L.E.; Jacques, A.; Farguell, A.; Mandel, J.; Gaillardon, P.E.; et al. Evaluating Wildfire Smoke Transport Within a Coupled Fire-Atmosphere Model Using a High-Density Observation Network for an Episodic Smoke Event Along Utah’s Wasatch Front. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032712. [Google Scholar] [CrossRef]
- Lin, C.; Labzovskii, L.D.; Mak, H.W.L.; Fung, J.C.; Lau, A.K.; Kenea, S.T.; Bilal, M.; Hey, J.D.V.; Lu, X.; Ma, J. Observation of PM2.5 using a combination of satellite remote sensing and low-cost sensor network in Siberian urban areas with limited reference monitoring. Atmos. Environ. 2020, 227, 117410. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Li, F.; Cochrane, M.; Ciren, P. Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions. Remote Sens. 2021, 13, 196. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.M.; McCaw, L.; Powell, J.C.; Tolhurst, K.; Keywood, M.D.; Gras, J.L. Impact of smoke from biomass burning on air quality in rural communities in southern Australia. Atmos. Environ. 2011, 45, 3944–3953. [Google Scholar] [CrossRef]
- Zusman, M.; Schumacher, C.S.; Gassett, A.J.; Spalt, E.W.; Austin, E.; Larson, T.V.; Carvlin, G.; Seto, E.; Kaufman, J.D.; Sheppard, L. Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study. Environ. Int. 2020, 134, 105329. [Google Scholar] [CrossRef] [PubMed]
- Borrego, C.; Ginja, J.; Coutinho, M.; Ribeiro, C.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise–Part II. Atmos. Environ. 2018, 193, 127–142. [Google Scholar] [CrossRef]
- Feinberg, S.; Williams, R.; Hagler, G.S.W.; Rickard, J.; Brown, R.; Garver, D.; Harshfield, G.; Stauffer, P.; Mattson, E.; Judge, R.; et al. Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado. Atmos. Meas. Tech. 2018, 11, 4605–4615. [Google Scholar] [CrossRef] [Green Version]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef] [Green Version]
- Ardon-Dryer, K.; Dryer, Y.; Williams, J.N.; Moghimi, N. Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmos. Meas. Tech. 2020, 13, 5441–5458. [Google Scholar] [CrossRef]
- Bulot, F.M.J.; Johnston, S.J.; Basford, P.J.; Easton, N.H.C.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.R.; Cox, S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 1–13. [Google Scholar]
- Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors 2020, 20, 4796. [Google Scholar] [CrossRef]
- Zamora, M.L.; Xiong, F.; Gentner, D.R.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2018, 53, 838–849. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Gantt, B.; Clements, A.L. Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor. Atmos. Meas. Tech. 2021, 14, 4617–4637. [Google Scholar] [CrossRef]
- Delp, W.W.; Singer, B.C. Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM(2.5)Monitors with Optical Sensors. Sensors 2020, 20, 3683. [Google Scholar] [CrossRef]
- Robinson, D.L. Accurate, Low Cost PM(2.5)Measurements Demonstrate the Large Spatial Variation in Wood Smoke Pollution in Regional Australia and Improve Modeling and Estimates of Health Costs. Atmosphere 2020, 11, 856. [Google Scholar]
- Bulot, F.M.J.; Russell, H.S.; Rezaei, M.; Johnson, M.S.; Ossont, S.J.J.; Morris, A.K.R.; Basford, P.J.; Easton, N.H.C.; Foster, G.L.; Loxham, M.; et al. Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution. Sensors 2020, 20, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuula, J.; Mäkelä, T.; Aurela, M.; Teinilä, K.; Varjonen, S.; González, Ó.; Timonen, H. Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 2020, 13, 2413–2423. [Google Scholar] [CrossRef]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2020, 220, 117067. [Google Scholar] [CrossRef]
- Tryner, J.; Mehaffy, J.; Miller-Lionberg, D.; Volckens, J. Effects of aerosol type and simulated aging on performance of low-cost PM sensors. J. Aerosol Sci. 2020, 150, 105654. [Google Scholar] [CrossRef]
- Wang, W.-C.V.; Lung, S.-C.C.; Liu, C.H.; Shui, C.-K. Laboratory Evaluations of Correction Equations with Multiple Choices for Seed Low-Cost Particle Sensing Devices in Sensor Networks. Sensors 2020, 20, 3661. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.Y.; Clark, J.D.; May, A.A. Laboratory evaluation of the effects of particle size and composition on the performance of integrated devices containing Plantower particle sensors. Aerosol. Sci. Tech. 2021, 55, 848–858. [Google Scholar]
- Zou, Y.Y.; Clark, J.D.; May, A.A. A systematic investigation on the effects of temperature and relative humidity on the performance of eight low-cost particle sensors and devices. J. Aerosol. Sci. 2021, 152, 105715. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Ahn, K.-H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyarku, M.; et al. Low-cost PM2.5 Sensors: An Assessment of Their Suitability for Various Applications. Aerosol Air Qual. Res. 2020, 20, 520–532. [Google Scholar] [CrossRef]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef]
- Lung, S.-C.C.; Wang, W.-C.V.; Wen, T.-Y.J.; Liu, C.-H.; Hu, S.-C. A versatile low-cost sensing device for assessing PM2.5 spatiotemporal variation and quantifying source contribution. Sci. Total Environ. 2020, 716, 137145. [Google Scholar] [CrossRef]
- Sayahi, T.; Butterfield, A.; Kelly, K. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Stampfer, O.; Austin, E.; Ganuelas, T.; Fiander, T.; Seto, E.; Karr, C.J. Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation. Atmos. Environ. 2020, 224, 117292. [Google Scholar] [CrossRef]
- Peltier, R.E.; Castell, N.; Clements, A.L.; Dye, T.; Hüglin, C.; Kroll, J.H.; Lung, S.C.C.; Ning, Z.; Parsons, M.; Penza, M.; et al. An Update on Low-cost Sensors for the Measurement of Atmospheric Composition; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Kelly, K.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.; Sioutas, C.; Koutrakis, P.; Reiss, R.; Lurmann, F.W.; Roberts, P.T. Evaluation of the TEOM(R) method for measurement of ambient particulate mass in urban areas. J. Air Waste Manag. 1997, 47, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.; Allen, R.; Lawrence, K.; Roulston, C.; Powell, J.; Williamson, G.; Jones, P.; Reisen, F.; Morgan, G.; Johnston, F. Can Public Spaces Effectively Be Used as Cleaner Indoor Air Shelters during Extreme Smoke Events? Int. J. Environ. Res. Public Health 2021, 18, 4085. [Google Scholar] [CrossRef]
- Wallace, L.A.; Wheeler, A.J.; Kearney, J.; Van Ryswyk, K.; You, H.Y.; Kulka, R.H.; Rasmussen, P.E.; Brook, J.R.; Xu, X.H. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci. Environ. Epidemiol. 2010, 21, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P. Lmodel2: Model II Regression. R Package Version 1.7-3. 2018. Available online: https://CRAN.R-project.org/package=lmodel2 (accessed on 5 October 2021).
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255. [Google Scholar] [CrossRef]
- Lin, L. A note on the concordance correlation coefficient. Biometrics 2000, 56, 324–325. [Google Scholar]
- Stevenson, M.; Sergeant, E. Epir: Tools for the Analysis of Epidemiological Data. R Package Version 2.0.26. 2021. Available online: https://CRAN.R-project.org/package=epiR (accessed on 5 October 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 5 October 2021).
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Pandis, S.; Yannopoulos, P.; Bloutsos, A.; Kazantzidis, A. Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site. Sci. Total Environ. 2020, 748, 141396. [Google Scholar] [CrossRef] [PubMed]
- Barkjohn, K.J.; Bergin, M.H.; Norris, C.; Schauer, J.J.; Zhang, Y.; Black, M.; Hu, M.; Zhang, J. Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. Aerosol Air Qual. Res. 2020, 20, 297–313. [Google Scholar] [CrossRef]
- Wallace, L.; Bi, J.; Ott, W.R.; Sarnat, J.; Liu, Y. Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM. Atmos. Environ. 2021, 256, 118432. [Google Scholar] [CrossRef]
- Croghan, W.; Egeghy, P.P. Methods of Dealing with Values below the Limit of Detection Using SAS. In Proceedings of the Southern SAS User Group, St. Petersburg, FL, USA, 22–24 September 2003. [Google Scholar]
- U.S. Environmental Protection Agency. Data Quality Assessment: Statistical Methods for Practitioners; Office of Environmental Information: Washington, DC, USA, 2006. [Google Scholar]
- Chung, A.; Chang, D.P.; Kleeman, M.J.; Perry, K.D.; Cahill, T.A.; Dutcher, D.; McDougall, E.M.; Stroud, K. Comparison of Real-Time Instruments Used To Monitor Airborne Particulate Matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef]
- Heal, M.R.; Beverland, I.J.; McCabe, M.; Hepburn, W.; Agius, R.M. Intercomparison of five PM10 monitoring devices and the implications for exposure measurement in epidemiological research. J. Environ. Monit. 2000, 2, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingham, S.; Durand, M.; Aberkane, T.; Harrison, J.; Wilson, J.G.; Epton, M. Winter comparison of TEOM, MiniVol and DustTrak PM(10) monitors in a woodsmoke environment. Atmos. Environ. 2006, 40, 338–347. [Google Scholar] [CrossRef]
- Singer, B.C.; Delp, W.W. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. Indoor Air 2018, 28, 624–639. [Google Scholar] [CrossRef]
- Carrico, C.M.; Prenni, A.J.; Kreidenweis, S.M.; Levin, E.J.T.; McCluskey, C.S.; DeMott, P.J.; McMeeking, G.R.; Nakao, S.; Stockwell, C.; Yokelson, R.J. Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. J. Geophys. Res. Atmos. 2016, 121, 5750–5768. [Google Scholar] [CrossRef]
- Duvall, R.M.; Clements, A.L.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors. Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications; Office of Research and Development and Center for Environmental Measurement and Modelling, Ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.
- Rai, A.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; DI Sabatino, S.; Ratti, C.; Yasar, A.-U.-H.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South Coast Air Quality Management District. Field evaluation Laser Egg PM Sensor. 2017. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/laser-egg---field-evaluation.pdf (accessed on 5 October 2021).
- Kuula, J.; Friman, M.; Helin, A.; Niemi, J.V.; Aurela, M.; Timonen, H.; Saarikoski, S. Utilization of scattering and absorption-based particulate matter sensors in the environment impacted by residential wood combustion. J. Aerosol Sci. 2020, 150, 105671. [Google Scholar] [CrossRef]
- Alfano, B.; Barretta, L.; Del Giudice, A.; De Vito, S.; Di Francia, G.; Esposito, E.; Formisano, F.; Massera, E.; Miglietta, M.L.; Polichetti, T. A Review of Low-Cost Particulate Matter Sensors from the Developers’ Perspectives. Sensors 2020, 20, 6819. [Google Scholar] [CrossRef] [PubMed]
- Ellenburg, J.A.; Williford, C.J.; Rodriguez, S.L.; Andersen, P.C.; Turnipseed, A.A.; Ennis, C.A.; Basman, K.A.; Hatz, J.M.; Prince, J.C.; Meyers, D.H.; et al. Global Ozone (GO3) Project and AQTreks: Use of evolving technologies by students and citizen scientists to monitor air pollutants. Atmos. Environ. X 2019, 4, 100048. [Google Scholar] [CrossRef]
Parameters | SMOG | E-Sampler | Fidas | TEOM |
---|---|---|---|---|
Sampling time (s) | 1 | 1 | 1 | 2 |
Size range (μm) | 0.3–10 | 0.1–100 | 0.18–18 | NA |
Resolution (μg m−3) | 1 | 1 | 0.1 | 0.1 |
Effective detection range (μg m−3) | 0–500 | 0–65,000 | 0–10,000 | 0–1,000,000 |
Flow rate (lpm) | NA | 2 | 4.8 | 3 |
Temperature range (°C) | −10 to 60 | −30 to 50 | −20 to 50 | −40 to 60 |
Humidity range (%) | 0–99 | Drying system | Drying system | Drying system |
Light source wavelength | 650 nm | 670 nm | Polychromatic LED | NA |
Scattering angle | 90° | forward | 85–95° | NA |
PM sizing | Mie-scattering | Cyclone | Mie-scattering | PM2.5 inlet |
Weight (kg) | 0.04 | 6.4 | 9.3 | 18 |
Size (mm) | 38 × 35 × 12 | 267 × 235 × 145 | 180.5 × 450 × 320 | 432 × 483 × 1400 |
Measurement Period | SMOG ID | Slope | Intercept | r2 | RMSE | NRMSE | Bias | MAE | CCC | N (h) |
---|---|---|---|---|---|---|---|---|---|---|
Aspendale autumn (2018) | 2 vs. 3 | 0.84 | 0.95 | 0.94 | 2.06 | 26.4 | 0.33 | 1.71 | 0.95 | 72 |
2 vs. 4 | 1.03 | 0.41 | 0.98 | 1.32 | 16.9 | -0.67 | 0.96 | 0.98 | 72 | |
4 vs. 3 | 0.81 | 0.62 | 0.94 | 2.43 | 28.7 | 1.00 | 1.93 | 0.94 | 72 | |
NE Victoria May–June 2018 | 23 vs. 25 | 0.98 | −0.01 | 0.98 | 0.70 | 20.0 | −0.09 | 0.39 | 0.99 | 831 |
15 vs. 21 | 1.00 | 0.15 | 0.98 | 0.67 | 15.5 | 0.14 | 0.36 | 0.99 | 775 | |
3 vs. 24 | 1.03 | −0.10 | 0.74 | 3.07 | 82.6 | 0.01 | 1.24 | 0.86 | 792 | |
1 vs. 30 | 0.99 | −0.77 | 0.97 | 1.76 | 26.5 | −0.84 | 1.03 | 0.98 | 614 | |
22 vs. 28 | 0.82 | −0.10 | 0.93 | 1.57 | 51.1 | −0.82 | 0.87 | 0.92 | 820 | |
6 vs. 7 | 0.99 | −0.08 | 0.99 | 0.63 | 9.7 | −0.15 | 0.39 | 1.00 | 72 | |
12 vs. 13 | 0.96 | −0.05 | 0.99 | 0.74 | 16.8 | −0.24 | 0.41 | 0.99 | 855 | |
2 vs. 4 | 0.85 | −0.16 | 0.93 | 1.18 | 64.2 | −0.51 | 0.52 | 0.94 | 855 | |
16 vs. 17 | 1.09 | 0.27 | 0.99 | 0.93 | 22.2 | 0.60 | 0.61 | 0.99 | 828 | |
18 vs. 19 | 0.97 | 0.04 | 0.99 | 0.85 | 11.9 | −0.15 | 0.52 | 1.00 | 825 | |
8 vs. 9 | 0.97 | 0.74 | 0.97 | 1.98 | 22.4 | 0.53 | 0.80 | 0.98 | 849 | |
10 vs. 11 | 0.97 | −0.34 | 0.99 | 1.33 | 18.5 | −0.59 | 0.84 | 0.99 | 855 | |
NE Victoria November 2018–June 2019 | 6 vs. 15 | 0.93 | −0.25 | 0.99 | 2.12 | 25.7 | −0.64 | 0.88 | 0.99 | 2502 |
2 vs. 14 | 1.04 | −0.19 | 0.99 | 1.91 | 76.0 | 0.13 | 0.77 | 1.00 | 2573 | |
3 vs. 41 | 0.91 | −0.44 | 0.93 | 2.45 | 48.3 | −0.80 | 1.25 | 1.00 | 1607 | |
9 vs. 26 | 1.11 | −0.09 | 0.86 | 2.72 | 45.9 | 0.45 | 1.02 | 1.00 | 1384 | |
7 vs. 10 | 0.96 | −0.41 | 0.96 | 2.22 | 25.7 | −0.63 | 0.96 | 0.98 | 3360 |
Location | Date | Gravimetric | SMOG | Fidas | E-Sampler | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(μg m−3) | Average 1 (μg m−3) | Average (OLS) 2 (μg m−3) | CF 3 | Missing Data (%) | <LOD (%) | Average (μg m−3) | CF | Missing Data (%) | Average (μg m−3) | CF | Missing Data (%) | ||
Aspendale | 25/06/18–02/07/18 | 9.34 | 39.3 | 22.7 | 0.41 | 64 | 4 | 17.9 | 0.52 | 0 | 12.1 | 0.77 | 0 |
02/07/18–09/07/18 | 3.42 | na 4 | na | na | na | na | 7.4 | 0.46 | 0 | 4.8 | 0.71 | 0 | |
09/07/18–16/07/18 | 7.25 | na | na | na | na | na | 10.8 | 0.67 | 0 | 4.9 | 1.49 | 0 | |
Rutherglen 5 | 01/05/18–21/05/18 | 4.71 | 7.12 | 4.12 | 1.15 | 3.8 | 69 | na | na | na | 3.59 | 1.31 | 0 |
21/05/18–06/06/18 | 4.41 | 6.90 | 3.99 | 1.10 | 6.1 | 64 | na | na | na | 3.39 | 1.30 | 0 | |
01/05/18–21/05/18 | 4.60 | 7.12 | 4.12 | 1.12 | 3.8 | 69 | na | na | na | 4.00 | 1.15 | 0 | |
21/05/18–06/06/18 | 4.33 | 6.90 | 3.99 | 1.08 | 6.1 | 64 | na | na | na | 3.55 | 1.22 | 0 | |
Alexandra | 29/11/18–09/12/18 | 4.44 | 1.63 | 0.94 | 4.71 | 10 | 92 | 4.83 | 0.92 | 11 | 1.85 | 2.40 | 0 |
18/12/18–27/12/18 | 3.77 | 6.79 | 3.92 | 0.96 | 81 | 68 | 4.20 | 0.90 | 4.7 | 2.02 | 1.87 | 0 | |
27/12/18–02/01/19 | 5.30 | 2.82 | 1.63 | 3.26 | 1.4 | 99 | 6.64 | 0.80 | 0 | 2.69 | 1.97 | 1.4 | |
02/01/19–12/01/19 | 4.48 | 2.75 | 1.59 | 2.82 | 11 | 95 | 5.85 | 0.77 | 13 | 2.71 | 1.65 | 0 | |
16/01/19–06/02/19 | 6.76 | 8.75 | 5.05 | 1.34 | 2.0 | 79 | 11.8 | 0.58 | 0 | 5.13 | 1.32 | 0 | |
06/02/19–04/03/19 | 4.52 | 2.88 | 1.66 | 2.72 | 49 | 91 | 6.84 | 0.66 | 2.5 | 2.82 | 1.60 | 2.7 | |
21/03/19–05/04/19 | 4.70 | 5.48 | 3.17 | 1.48 | 0 | 87 | 7.62 | 0.62 | 0.6 | 3.88 | 1.21 | 0.6 | |
05/04/19–18/04/19 | 7.32 | 13.2 | 7.62 | 0.96 | 26 | 54 | 15.6 | 0.47 | 33 | 5.86 | 1.25 | 20 | |
18/04/19–16/05/19 | 7.36 | 16.15 | 9.33 | 0.79 | 0 | 57 | 15.5 | 0.48 | 0 | 9.85 | 0.75 | 0 | |
16/05/19–13/06/19 | 12.03 | 30.2 | 17.4 | 0.69 | 3.1 | 46 | 24.4 | 0.49 | 0.1 | 18.1 | 0.66 | 0 |
SMOG Calibration | Reference Instrument | Slope | Intercept | r2 | Slope (Zero Int) | r2 | RMSE | NRMSE (%) | MBE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
Linear with zero intercept (all data) (Equation (2)) | E-sampler Fidas | 0.88 1.43 | 0.55 −2.53 | 0.87 0.95 | 0.90 1.30 | 0.90 0.94 | 4.76 5.17 | 67.3 74.6 | −0.29 0.52 | 2.50 2.98 |
Linear with non-zero intercept (all data) (Equation (1)) | E-sampler Fidas | 0.87 1.40 | 2.15 −0.88 | 0.87 0.95 | 0.94 1.36 | 0.90 0.96 | 4.90 5.33 | 69.3 76.9 | 1.20 2.00 | 2.82 2.69 |
Polynomial (all data) (Equation (3)) | E-sampler Fidas | 0.71 1.15 | 5.71 3.23 | 0.88 0.95 | 0.89 1.32 | 0.83 0.95 | 6.39 5.22 | 90.3 75.3 | 3.66 4.31 | 5.03 4.40 |
Linear with additive RH term (all data) (Equation (5)) | E-sampler Fidas | 0.82 1.33 | 3.17 0.58 | 0.83 0.94 | 0.91 1.36 | 0.86 0.96 | 5.81 5.33 | 82.2 76.9 | 1.84 2.93 | 3.84 3.49 |
Linear with additive RH and temperature term (all data) (Equation (4)) | E-sampler Fidas | 0.82 1.34 | 3.40 0.72 | 0.84 0.94 | 0.93 1.37 | 0.86 0.96 | 5.77 5.42 | 81.6 78.2 | 2.11 3.12 | 3.88 3.56 |
Aspendale autumn (Equation (2)) | E-sampler Fidas | 0.80 1.61 | 0.68 −3.80 | 0.78 0.93 | 0.85 1.24 | 0.90 0.94 | 4.02 3.45 | 41.5 45.2 | −1.22 0.83 | 3.42 2.33 |
Aspendale winter (Equation (2)) | E-sampler Fidas | 1.60 2.29 | 1.67 −3.62 | 0.84 0.96 | 1.69 2.04 | 0.91 0.97 | 11.0 11.9 | 139 146 | 6.63 6.80 | 6.84 7.25 |
Rutherglen (Equation (2)) | E-sampler | 0.90 | 0.12 | 0.76 | 0.92 | 0.87 | 2.08 | 50.0 | −0.27 | 1.41 |
Alexandra summer-autumn (Equation (2)) | E-sampler Fidas | 0.88 1.23 | 0.05 −2.18 | 0.81 0.92 | 0.88 1.05 | 0.85 0.91 | 3.66 2.81 | 74.5 54.7 | −0.56 −0.96 | 2.13 2.07 |
Alexandra winter (Equation (2)) | E-sampler Fidas | 0.84 1.45 | 2.54 −1.25 | 0.91 0.98 | 0.89 1.41 | 0.94 0.99 | 7.81 8.66 | 41.5 64.8 | −0.26 4.53 | 4.22 5.50 |
Location | Date | Units | SMOG PM2.5 Range (μg m−3) | Slope | r2 | Bias (Limit) | RMSE (μg m−3) | NRMSE |
---|---|---|---|---|---|---|---|---|
Aspendale | 26–28 June 2018 | SMOG vs. E-sampler_CF SMOG vs. Fidas_CF | 5.0–72.4 | 1.69 ± 0.07 2.10 ± 0.04 | 0.91 0.98 | 11.5 (−8.1 to 31.1) 13.3 (−6.3 to 33.0) | 15.2 16.6 | 105 132 |
Rutherglen | 7–11 May 2018 | SMOG vs. E-sampler4_CF SMOG vs. E-sampler5_CF | 0.0–39.3 | 0.82 ± 0.03 0.83 ± 0.03 | 0.88 0.87 | −0.7 (−6.4 to 4.9) −0.5 (−6.3 to 5.3) | 2.96 2.99 | 50.5 53.2 |
Alexandra | 1–6 February 2019 | SMOG vs. E-sampler_CF SMOG vs. E-sampler_OLS SMOG vs. Fidas_CF SMOG vs. Fidas_OLS | 0.1–75.3 | 0.90 ± 0.02 1.14 ± 0.02 1.11 ± 0.02 1.16 ± 0.02 | 0.96 0.96 0.97 0.97 | −1.2 (−10.5 to 8.1) 1.6 (−7.5 to 10.8) −0.25 (−8.3 to 7.8) 0.3 (−8.5 to 9.1) | 4.87 4.93 4.12 4.48 | 36.6 47.2 33.3 38.0 |
Alexandra | 10–23 April 2019 | SMOG vs. E-sampler_CF SMOG vs. Fidas_CF | 0.0–57.3 | 0.97 ± 0.03 1.22 ± 0.02 | 0.88 0.97 | 0.7 (−7.2 to 8.7) 1.3 (−4.2 to 6.8) | 4.10 3.10 | 46.8 37.8 |
Alexandra | 12 May–13 June 2019 | SMOG vs. E-sampler_CF SMOG vs. E-sampler_OLS SMOG vs. Fidas_CF SMOG vs. Fidas_OLS | 0.0–125 | 1.36 ± 0.01 0.89 ± 0.01 1.59 ± 0.01 1.41 ± 0.01 | 0.93 0.94 0.99 0.99 | 5.89 (−10.5 to 22.3) −0.26 (−15.6 to 15.0) 5.9 (−11.5 to 23.4) 4.5 (−9.9 to 19.0) | 10.2 7.81 10.7 8.66 | 89.4 44.4 94.1 67.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reisen, F.; Cooper, J.; Powell, J.C.; Roulston, C.; Wheeler, A.J. Performance and Deployment of Low-Cost Particle Sensor Units to Monitor Biomass Burning Events and Their Application in an Educational Initiative. Sensors 2021, 21, 7206. https://doi.org/10.3390/s21217206
Reisen F, Cooper J, Powell JC, Roulston C, Wheeler AJ. Performance and Deployment of Low-Cost Particle Sensor Units to Monitor Biomass Burning Events and Their Application in an Educational Initiative. Sensors. 2021; 21(21):7206. https://doi.org/10.3390/s21217206
Chicago/Turabian StyleReisen, Fabienne, Jacinta Cooper, Jennifer C. Powell, Christopher Roulston, and Amanda J. Wheeler. 2021. "Performance and Deployment of Low-Cost Particle Sensor Units to Monitor Biomass Burning Events and Their Application in an Educational Initiative" Sensors 21, no. 21: 7206. https://doi.org/10.3390/s21217206
APA StyleReisen, F., Cooper, J., Powell, J. C., Roulston, C., & Wheeler, A. J. (2021). Performance and Deployment of Low-Cost Particle Sensor Units to Monitor Biomass Burning Events and Their Application in an Educational Initiative. Sensors, 21(21), 7206. https://doi.org/10.3390/s21217206