Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach
Abstract
:1. Introduction
2. Recent Related Work
3. Materials and Methods
3.1. Mechanical Framework and Hardware
3.2. Control and Data-Acquisition Software
3.3. Animals and Experimental Design
3.4. Deep Learning-Based Method for Pupil Segmentation
3.4.1. Transfer Learning and Data Augmentation
3.4.2. Comparison to Other State-of-the-Art Baseline Architectures
3.5. Validation, Testing, and Evaluation Metrics
3.6. System Configuration and Training Details
3.7. Statistical Analysis
4. Results and Discussion
4.1. Mechanical Framework, Hardware, and User Interface
4.2. Control and Data-Acquisition Software
4.3. Segmentation Assessment
4.4. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- de Gee, J.W.; Tsetsos, K.; Schwabe, L.; Urai, A.E.; McCormick, D.; McGinley, M.J.; Donner, T.H. Pupil-linked phasic arousal predicts a reduction of choice bias across species and decision domains. eLife 2020, 9, e54014. [Google Scholar] [CrossRef] [PubMed]
- De Gee, J.W.; Knapen, T.; Donner, T.H. Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl. Acad. Sci. USA 2014, 111, E618–E625. [Google Scholar] [CrossRef] [Green Version]
- Ebitz, R.B.; Pearson, J.M.; Platt, M.L. Pupil size and social vigilance in rhesus macaques. Front. Neurosci. 2014, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Reimer, J.; Froudarakis, E.; Cadwell, C.R.; Yatsenko, D.; Denfield, G.H.; Tolias, A.S. Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness. Neuron 2014, 84, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassar, M.R.; Rumsey, K.M.; Wilson, R.C.; Parikh, K.; Heasly, B.; Gold, J.I. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 2012, 15, 1040–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, J.; McGinley, M.J.; Liu, Y.; Rodenkirch, C.; Wang, Q.; McCormick, D.A.; Tolias, A.S. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 2016, 7, 13289. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Li, Y.; Kalwani, R.M.; Gold, J.I. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2016, 89, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Costa, V.D.; Rudebeck, P.H. More than Meets the Eye: The Relationship between Pupil Size and Locus Coeruleus Activity. Neuron 2016, 89, 8–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, P.R.; O’Connell, R.G.; O’Sullivan, M.; Robertson, I.H.; Balsters, J.H. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum. Brain Mapp. 2014, 35, 4140–4154. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D.J.; Jensen, P.; McCall, J.G.; Pickering, A.E.; Schwarz, L.A.; Totah, N.K. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J. Neurosci. 2019, 39, 8239–8249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sara, S.J.; Bouret, S. Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron 2012, 76, 130–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorca-Torralba, M.; Borges, G.; Neto, F.; Mico, J.A.; Berrocoso, E. Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016, 338, 93–113. [Google Scholar] [CrossRef]
- Benarroch, E.E. Locus coeruleus. Cell Tissue Res. 2018, 373, 221–232. [Google Scholar] [CrossRef]
- Weinshenker, D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci. 2018, 41, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Betts, M.J.; Kirilina, E.; Otaduy, M.C.; Ivanov, D.; Acosta-Cabronero, J.; Callaghan, M.F.; Lambert, C.; Cardenas-Blanco, A.; Pine, K.; Passamonti, L.; et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019, 142, 2558–2571. [Google Scholar] [CrossRef]
- Bravo, L.; Alba-Delgado, C.; Torres-Sanchez, S.; Mico, J.A.; Neto, F.L.; Berrocoso, E. Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: The role of the locus coeruleus. Pain 2013, 154, 2014–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba-Delgado, C.; Llorca-Torralba, M.; Horrillo, I.; Ortega, J.E.; Mico, J.A.; Sánchez-Blázquez, P.; Meana, J.J.; Berrocoso, E. Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol. Psychiatry 2013, 73, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Llorca-Torralba, M.; Suárez-Pereira, I.; Bravo, L.; Camarena-Delgado, C.; Garcia-Partida, J.A.; Mico, J.A.; Berrocoso, E. Chemogenetic Silencing of the Locus Coeruleus–Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biol. Psychiatry 2019, 85, 1021–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, L.; Torres-Sanchez, S.; Alba-Delgado, C.; Mico, J.A.; Berrocoso, E. Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. Eur. Neuropsychopharmacol. 2014, 24, 996–1003. [Google Scholar] [CrossRef]
- Galgani, A.; Lombardo, F.; Della Latta, D.; Martini, N.; Bonuccelli, U.; Fornai, F.; Giorgi, F.S. Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases. Curr. Neurol. Neurosci. Rep. 2021, 21, 2. [Google Scholar] [CrossRef]
- Privitera, M.; Ferrari, K.D.; von Ziegler, L.M.; Sturman, O.; Duss, S.N.; Floriou-Servou, A.; Germain, P.L.L.; Vermeiren, Y.; Wyss, M.T.; De Deyn, P.P.; et al. A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents. Nat. Protoc. 2020, 15, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Harel, A.; Gao, H.Y.; Pickering, A.E.; Sara, S.J.; Wiener, S.I. Behavioral correlates of activity of optogenetically identified locus coeruleus noradrenergic neurons in rats performing T-maze tasks. Sci. Rep. 2019, 9, 1361. [Google Scholar] [CrossRef]
- Zerbi, V.; Floriou-Servou, A.; Markicevic, M.; Vermeiren, Y.; Sturman, O.; Privitera, M.; von Ziegler, L.; Ferrari, K.D.; Weber, B.; De Deyn, P.P.; et al. Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019, 103, 702–718. [Google Scholar] [CrossRef]
- Liu, Y.; Rodenkirch, C.; Moskowitz, N.; Schriver, B.; Wang, Q. Dynamic Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions. Cell Rep. 2017, 20, 3099–3112. [Google Scholar] [CrossRef]
- Kelberman, M.; Keilholz, S.; Weinshenker, D. What’s That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front. Neurosci. 2020, 14, 1069. [Google Scholar] [CrossRef]
- Hämmerer, D.; Callaghan, M.F.; Hopkins, A.; Kosciessa, J.; Betts, M.; Cardenas-Blanco, A.; Kanowski, M.; Weiskopf, N.; Dayan, P.; Dolan, R.J.; et al. Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl. Acad. Sci. USA 2018, 115, 2228–2233. [Google Scholar] [CrossRef] [Green Version]
- Elman, J.A.; Panizzon, M.S.; Hagler, D.J.; Eyler, L.T.; Granholm, E.L.; Fennema-Notestine, C.; Lyons, M.J.; McEvoy, L.K.; Franz, C.E.; Dale, A.M.; et al. Task-evoked pupil dilation and BOLD variance as indicators of locus coeruleus dysfunction. Cortex 2017, 97, 60–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naegeli, C.; Zeffiro, T.; Piccirelli, M.; Jaillard, A.; Weilenmann, A.; Hassanpour, K.; Schick, M.; Rufer, M.; Orr, S.P.; Mueller-Pfeiffer, C. Locus Coeruleus Activity Mediates Hyperresponsiveness in Posttraumatic Stress Disorder. Biol. Psychiatry 2018, 83, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Zuend, M.; Saab, A.S.; Wyss, M.T.; Ferrari, K.D.; Hösli, L.; Looser, Z.J.; Stobart, J.L.; Duran, J.; Guinovart, J.J.; Barros, L.F.; et al. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat. Metab. 2020, 2, 179–191. [Google Scholar] [CrossRef]
- Breton-Provencher, V.; Sur, M. Active control of arousal by a locus coeruleus GABAergic circuit. Nat. Neurosci. 2019, 22, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hayat, H.; Regev, N.; Matosevich, N.; Sales, A.; Paredes-Rodriguez, E.; Krom, A.J.; Bergman, L.; Li, Y.; Lavigne, M.; Kremer, E.J.; et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 2020, 6, eaaz4232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yüzgeç, O.; Prsa, M.; Zimmermann, R.; Huber, D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr. Biol. 2018, 28, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Andreassi, J.L. Pupillary Response and Behavior. In Psychophysiology: Human Behavior and Physiological Response; Psychology Press: Hove, UK, 2006; pp. 289–304. [Google Scholar]
- Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. bioRxiv 2018, 14, 2152–2176. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.L.; Kuo, T.L.; Chang, C.C.; Fan, C.P. Deep-Learning-Based Pupil Center Detection and Tracking Technology for Visible-Light Wearable Gaze Tracking Devices. Appl. Sci. 2021, 11, 851. [Google Scholar] [CrossRef]
- Fuhl, W.; Santini, T.; Kasneci, G.; Rosenstiel, W.; Kasneci, E. PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection. arXiv 2017, arXiv:1711.00112. [Google Scholar]
- Vera-Olmos, F.J.; Pardo, E.; Melero, H.; Malpica, N. DeepEye: Deep convolutional network for pupil detection in real environments. Integr. Comput. Aided Eng. 2018, 26, 85–95. [Google Scholar] [CrossRef]
- Yiu, Y.H.; Aboulatta, M.; Raiser, T.; Ophey, L.; Flanagin, V.L.; zu Eulenburg, P.; Ahmadi, S.A. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. J. Neurosci. Methods 2019, 324, 108307. [Google Scholar] [CrossRef]
- Lee, K.I.; Jeon, J.H.; Song, B.C. Deep Learning-Based Pupil Center Detection for Fast and Accurate Eye Tracking System; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12364, pp. 36–52. [Google Scholar] [CrossRef]
- Büki, A.; Kalmár, G.; Kekesi, G.; Benedek, G.; Nyúl, L.G.; Horvath, G. Impaired pupillary control in “schizophrenia-like” WISKET rats. Auton. Neurosci. 2018, 213, 34–42. [Google Scholar] [CrossRef]
- Borges, G.; Miguelez, C.; Neto, F.; Mico, J.A.; Ugedo, L.; Berrocoso, E. Activation of Extracellular Signal-Regulated Kinases (ERK 1/2) in the Locus Coeruleus Contributes to Pain-Related Anxiety in Arthritic Male Rats. Int. J. Neuropsychopharmacol. 2017, 20, 463–475. [Google Scholar] [CrossRef]
- Srinivas, S.; Sarvadevabhatla, R.K.; Mopuri, K.R.; Prabhu, N.; Kruthiventi, S.S.; Babu, R.V. A taxonomy of deep convolutional neural nets for computer vision. Front. Robot. AI 2016, 2, 36. [Google Scholar] [CrossRef]
- Sultana, F.; Sufian, A.; Dutta, P. Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey. Knowl. Based Syst. 2020, 201–202, 106062. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, C.; Hengel, A.v.d. Bridging Category-level and Instance-level Semantic Image Segmentation. arXiv 2016, arXiv:1605.06885. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tian, Z.; Shen, C.; You, M.; Yan, Y. Mask Encoding for Single Shot Instance Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 10223–10232. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Shen, H.; Cheng, B.; Yang, L. CenterMask: Single shot instance segmentation with point representation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 9310–9318. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-time instance segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Sepul, Korea, 27 October 2019–2 November 2019; pp. 9156–9165. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Girshick, R.; He, K.; Dollar, P. TensorMask: A foundation for dense object segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Sepul, Korea, 27 October 2019–2 November 2019; pp. 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- Zagoruyko, S.; Lerer, A.; Lin, T.Y.; Pinheiro, P.O.; Gross, S.; Chintala, S.; Doll r, P. A multipath network for object detection. In Proceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK, 19–22 September 2016; pp. 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, P.O.; Collobert, R.; Dollar, P. Learning to Segment Object Candidates. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1990–1998. [Google Scholar]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. SOLOv2: Dynamic and Fast Instance Segmentation. arXiv 2020, arXiv:2003.10152. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef] [Green Version]
- Kalmár, G.; Büki, A.; Kékesi, G.; Horváth, G.; Nyúl, L.G. Automating, analyzing and improving pupillometry with machine learning algorithms. Acta Cybern. 2019, 24, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Cham, Switzerland, 2018; Volume 11211, pp. 833–851. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef] [Green Version]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, E.C. Experimental verification of objective visual fatigue measurement based on accurate pupil detection of infrared eye image and multi-feature analysis. Sensors 2020, 20, 4814. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. SOLO: Segmenting Objects by Locations. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12363, pp. 649–665. [Google Scholar] [CrossRef]
- Martin Bland, J.; Altman, D.G. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
Authors | Year | Vision Hardware | Light Source | Binocular System | Method to Estimate the Pupil Size |
---|---|---|---|---|---|
Hayat et al. [31] | 2020 | Color cameras | Infrared light | No | Image analysis pipeline using MATLAB |
Privitera et al. [21] | 2020 | Raspberry Pi 3 Night vision camera | Infrared light | No | Image analysis pipeline using MATLAB and, alternatively, a deep neural network (DeepLabCut) |
Zerbi et al. [23] | 2019 | Raspberry Pi 3 Night vision camera | White and infrared light | No | Image analysis pipeline using MATLAB |
Breton-Provencher and Sur [30] | 2019 | High-resolution CMOS camera 1.0× telecentric lens | Infrared light | No | Image analysis pipeline using MATLAB |
Yüzgeç et al. [32] | 2018 | 0.3 MP USB cameras Micro-video lens 25.0 mm, f/2.5 | Infrared-back illumination | Yes | Image analysis pipeline using MATLAB |
Liu et al. [24] | 2017 | Pupillometry system assembled in-house | White light | Yes | Not detailed |
Reimer et al. [6] | 2016 | High-resolution CMOS camera 1.0× telecentric lens | Red and green light | No | Image analysis pipeline using LabVIEW and MATLAB |
Setup Parameter | Value |
---|---|
Pixel Clock | 30 MHz |
Frame rate | 10 fps |
Exposure time | 79.085 ms |
Image size | 1280 × 1024 px |
Format | Mono 8 bits per pixel |
Gain | User adjustable |
Validation Set/Test Set | |||||
---|---|---|---|---|---|
Method | IoU | MAPE PD (%) | MAPE PC (%) | MAPE Cx (%) | MAPE Cy (%) |
Mask R-CNN | 0.92/0.93 | 4.13/2.98 | 2.11/3.28 | 0.30/0.18 | 0.30/0.23 |
DeepLabv3+ ResNet-50 | 0.90/0.86 | 4.25/5.28 | 2.72/4.45 | 0.45/0.73 | 0.57/0.91 |
DeepLabV3+ ResNet-18 | 0.84/0.79 | 7.80/7.94 | 11.95/13.19 | 0.86/1.05 | 0.82/1.14 |
DeepLabv3+ MobileNetV2 | 0.87/0.87 | 5.87/5.88 | 7.28/4.94 | 0.70/0.51 | 0.62/0.52 |
DeepLabV3+ Xception | 0.80/0.77 | 11.71/10.06 | 11.14/9.41 | 1.30/0.94 | 1.19/1.36 |
SegNet | 0.74/0.70 | 16.85/22.24 | 80.15/76.62 | 1.77/0.76 | 1.49/0.72 |
Traditional Algorithm | 0.70/0.80 | 13.43/8.38 | 24.55/10.46 | 2.18/1.50 | 2.42/1.05 |
Proposed method | 0.94/0.93 | 1.70/1.89 | 1.89/2.56 | 0.26/0.26 | 0.36/0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Doña, A.; Torres-Sanchez, S.; Priego-Torres, B.; Berrocoso, E.; Sanchez-Morillo, D. Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors 2021, 21, 7106. https://doi.org/10.3390/s21217106
Lara-Doña A, Torres-Sanchez S, Priego-Torres B, Berrocoso E, Sanchez-Morillo D. Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors. 2021; 21(21):7106. https://doi.org/10.3390/s21217106
Chicago/Turabian StyleLara-Doña, Alejandro, Sonia Torres-Sanchez, Blanca Priego-Torres, Esther Berrocoso, and Daniel Sanchez-Morillo. 2021. "Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach" Sensors 21, no. 21: 7106. https://doi.org/10.3390/s21217106
APA StyleLara-Doña, A., Torres-Sanchez, S., Priego-Torres, B., Berrocoso, E., & Sanchez-Morillo, D. (2021). Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. Sensors, 21(21), 7106. https://doi.org/10.3390/s21217106