Special Issue on “Smart City and Smart Infrastructure”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qarout, Y.; Raykov, Y.P.; Little, M.A. Probabilistic modelling for unsupervised analysis of human behaviour in smart cities. Sensors 2020, 20, 784. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.-Y. Design of a structural health monitoring system for long-span bridges. Struct. Infrastruct. Eng. 2007, 3, 169–185. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, X.; Wang, X.; Dong, L.; Qian, Y. Deployment of a smart structural health monitoring system for long-span arch bridges: A review and a case study. Sensors 2017, 17, 2151. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Sim, S.-H.; Cho, S.; Yun, C.-B.; Min, J. Recent R&D activities on structural health monitoring in korea. Struct. Monit. Maint. 2016, 3, 91–114. [Google Scholar]
- Yarnold, M.T.; Moon, F.L. Temperature-based structural health monitoring baseline for long-span bridges. Eng. Struct. 2015, 86, 157–167. [Google Scholar] [CrossRef]
- Catbas, F.N.; Susoy, M.; Frangopol, D.M. Structural health monitoring and reliability estimation: Long-span truss bridge application with environmental monitoring data. Eng. Struct. 2008, 30, 2347–2359. [Google Scholar] [CrossRef]
- Spencer, B.F.; Cho, S.; Sim, S.-H. Wireless monitoring of civil infrastructure comes of age. Struct. Mag. 2011, 13, 12–16. [Google Scholar]
- Cho, S.; Park, J.-W.; Sim, S.-H. Decentralized system identification using stochastic subspace identification for wireless sensor networks. Sensors 2015, 15, 8131–8145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.; Jo, H.; Cho, S.; Mechitov, K.; Rice, J.A.; Sim, S.-H.; Jung, H.-J.; Yun, C.-B.; Spencer, B.F.; Agha, G. Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Struct. Syst. 2010, 6, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Shin, M.; Lim, S.; Park, J.; Kim, J.; Paik, J. Intelligent image-based railway inspection system using deep learning-based object detection and weber contrast-based image comparison. Sensors 2019, 19, 4738. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, K.C.; Jeong, S.; Lee, Y.J.; Sim, S.-H. Long-term displacement measurement of full-scale bridges using camera ego-motion compensation. Mech. Syst. Signal Process. 2020, 140, 106651. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Image-based concrete crack assessment using mask and region-based convolutional neural network. Struct. Control. Health Monit. 2019, 26, e2381. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Lee, S.-H. A novel method for estimating monocular depth using cycle GAN and segmentation. Sensors 2020, 20, 2567. [Google Scholar] [CrossRef]
- Ko, T.-Y.; Lee, S.-H. Novel method of semantic segmentation applicable to augmented reality. Sensors 2020, 20, 1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, S.; Kwon, J. Extreme low-light image enhancement for surveillance cameras using attention U-net. Sensors 2020, 20, 495. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Ryu, S.-K. Road surface damage detection using fully convolutional neural networks and semi-supervised learning. Sensors 2019, 19, 5501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, K.-C.; Sim, S.-H.; Lee, J.; Lee, Y.-J. Bayesian prediction of pre-stressed concrete bridge deflection using finite element analysis. Sensors 2019, 19, 4956. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.; Kim, N. Design and optimization of an MFL coil sensor apparatus based on numerical survey. Sensors 2019, 19, 4869. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, K.-C.; Lee, S.; Lee, Y.-J.; Sim, S.-H. Long-term displacement measurement of bridges using a LiDAR system. Struct. Control. Health Monit. 2019, 26, 2428. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Automated multiple concrete damage detection using instance segmentation deep learning model. Appl. Sci. 2020, 10, 8008. [Google Scholar] [CrossRef]
- Szeląg, B.; Drewnowski, J.; Łagód, G.; Majerek, D.; Dacewicz, E.; Fatone, F. Soft sensor application in identification of the activated sludge bulking considering the technological and economical aspects of smart systems functioning. Sensors 2020, 20, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, K.A.; Wang, Y.; Li, G.; Luo, Z.; Watkins, C. Realtime tracking of passengers on the London underground transport by matching smartphone accelerometer footprints. Sensors 2019, 19, 4184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Jung, H.; Kong, M.J.; Lee, D.K.; An, Y.-K. In-situ data-driven buffeting response analysis of a cable-stayed bridge. Sensors 2019, 19, 3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, S.-H.; Lee, J.-J. Special Issue on “Smart City and Smart Infrastructure”. Sensors 2021, 21, 7064. https://doi.org/10.3390/s21217064
Sim S-H, Lee J-J. Special Issue on “Smart City and Smart Infrastructure”. Sensors. 2021; 21(21):7064. https://doi.org/10.3390/s21217064
Chicago/Turabian StyleSim, Sung-Han, and Jong-Jae Lee. 2021. "Special Issue on “Smart City and Smart Infrastructure”" Sensors 21, no. 21: 7064. https://doi.org/10.3390/s21217064
APA StyleSim, S.-H., & Lee, J.-J. (2021). Special Issue on “Smart City and Smart Infrastructure”. Sensors, 21(21), 7064. https://doi.org/10.3390/s21217064